

Mental-Math for AI: Unlocking Latent
Capabilities in Large Language Models for
Large-Integer Multiplication Problems

Organization: Bitforge Dynamics | March 21, 2025 | Version 1.0​
Author: Brock Daily | Co-Author: Daniel Rubinov | bitforgedynamics.com/contact

Abstract

We’ve discovered a breakthrough approach that enhances AI reasoning for multiplying large
numbers. Our structured reasoning prompt enables leading AI models like Claude 3.7 and GPT
4.5 to achieve over 90% accuracy on multiplication problems with five or six digits. Our unique
system-prompt (under 750 tokens) combines human mental-math techniques with a systematic
error-checking process. Without any model modifications or external calculators, we've
harnessed distribution patterns that give AI the ability to reason through complex calculations
step-by-step with abstracted, natural language. By structuring the reasoning process similarly to
how expert human calculators think, we've dramatically improved performance on what were
considered inherently difficult tasks for language models. This report includes an immediately
applicable technique that makes state-of-the-art AI systems more reliable for real-world
computational tasks, while revealing how human-inspired thinking patterns can be effectively
translated into AI prompts.

Accuracy on Large-Integer Multiplication Problems (10,000 to 999,999 x 10,000 to 999,999)

Chart Data Available | 2 Models | 440 Tests Analyzed | 220 Unique Problems Total

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com

http://bitforgedynamics.com/contact

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

1. Introduction

Large Language Models (LLMs) have
demonstrated remarkable capabilities across
diverse domains, yet they consistently
struggle with fundamental arithmetic
operations that humans master in elementary
school. While these models can generate
eloquent prose, engage in nuanced
reasoning, and access vast knowledge
repositories, their performance deteriorates
dramatically when confronted with
multi-digit multiplication problems. For
instance, recent studies show that GPT-4
achieves low scores for four-digit problems
and near zero for five-digit calculations [1].

This arithmetic deficiency represents a
significant limitation for deploying LLMs in
domains requiring computational reliability.
Financial analysts examining cash flow
projections, engineers calculating material
requirements, scientists modeling physical
phenomena, and educators demonstrating
mathematical concepts all require systems
that can perform basic arithmetic with high
precision. The stark contrast between LLMs'
sophisticated language capabilities and their
arithmetic shortcomings raises fundamental
questions about their reasoning processes
and how these processes might be enhanced.

Several approaches have emerged to address
this limitation. Chain-of-thought prompting
encourages models to generate intermediate
reasoning steps, showing modest
improvements for some mathematical tasks.
More structured techniques such as

divide-and-conquer prompting [3]
systematically break problems into
manageable components, achieving better
results for specific arithmetic operations.
Meanwhile, other researchers have pursued
fine-tuning strategies, with Yang et al. [10]
demonstrating that specialized training can
enable even a 2-billion parameter model
(MathGLM) to achieve near-perfect
accuracy on complex multiplications, far
surpassing GPT-4's performance. However,
fine-tuning requires extensive computational
resources and specialized datasets, making it
impractical for many users.

In this paper, we present a novel structured
reasoning prompt that dramatically improves
large-integer multiplication accuracy in
state-of-the-art (SOTA) LLMs.

Our key contributions include:

1.​ A structured reasoning prompt
comprising fewer than 750 tokens
that elevates large-integer
multiplication accuracy

2.​ Integration of human-inspired mental
arithmetic techniques with LLM
prompting, showing that cognitive
shortcuts for AI models really work

3.​ A multi-layered verification protocol
that systematically prevents common
error patterns in problem-solving

4.​ A publicly available implementation
that allows researchers and
practitioners to reproduce our results

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 2 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

2. Related Work

2.1 LLM Arithmetic Capabilities and
Limitations Studies

As we highlighted in the introduction,
research by Golkar et al. revealed that
previous, cutting-edge models like GPT-4
experienced performance-loss on four-digit
problems and generated nearly zero accurate
results for five-digit calculations [1]. This
decline in accuracy with increasing digit
length suggests fundamental limitations in
how these models process numerical
operations. This report focuses on new
models with advanced generalization such
as GPT-4.5 from Open AI and Clause 3.7
Sonnet from Anthropic. Our tests with
GPT-4o failed to witness significant
improvement (with our structured prompt).
However, GPT-4.5 gained 3x relative
improvement for solving complicated
multiplication problems in the discussed
experiment (report data available).

Analysis indicates that LLMs often correctly
estimate the magnitude of large products
(e.g., the first digit) yet fail on exact
arithmetic, frequently miscalculating the
final digits [2]. This pattern suggests these
models develop some approximate sense of
multiplication from training data regularities
but cannot reliably execute precise
multi-step calculations with standard
prompting approaches.

The underlying architecture of
transformer-based LLMs theoretically
possesses the capacity to represent complex
operations like multiplication. However,

standard training procedures have not
yielded robust multi-digit calculation
abilities [3]. Models tend to confabulate or
latch onto patterns instead of computing
exact results, with even minor increases in
digit count causing cascading errors
throughout the calculation [1].

2.2 Chain-of-Thought and Strategic
Prompting Approaches Research

A significant advancement in prompting
techniques has been chain-of-thought (CoT)
prompting, especially those introduced by
Wei et al. [4]. This approach encourages
models to work through solutions in
intermediate steps, similar to human
calculation methods. By providing examples
of multi-step reasoning, CoT prompting has
demonstrated substantial improvements on
mathematical word problems and arithmetic
tasks. For multiplication specifically, CoT
prompting involves explicitly generating
partial products and performing their
addition sequentially, making the
computation explicit and reducing error
probability.

Building on CoT principles, Zhang et al.
developed divide-and-conquer (DaC)
prompting [3], which guides models to
recursively split large multiplications into
manageable subproblems, solve each
independently, and then combine the results.
In experiments with five-digit
multiplication, this structured decomposition
approach outperformed standard CoT and
other baseline methods, significantly

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 3 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

improving accuracy on both GPT-4 and
GPT-3.5. The success of DaC prompting
stems from its focus on repetitive sub-tasks
in isolation, helping models avoid
overwhelming complexity that leads to
hallucination and error.

Other noteworthy prompting strategies
include least-to-most prompting, which
breaks problems into progressively more
complex sub-questions, and self-consistency
approaches that generate multiple solution
paths to increase reliability [5]. While these
methods show improvements over baseline
prompting, they still fall short of achieving
the near-perfect accuracy required for
practical applications involving large-integer
arithmetic.

2.3 Mental Math Techniques and Their
Application to LLMs

Human mental calculation techniques offer
valuable inspiration for enhancing LLM
arithmetic. Methods from Vedic
Mathematics provide systematic approaches
for multiplication that reduce cognitive load.
For example, the Nikhilam sutra enables
efficient calculation when numbers are close
to powers of 10 by transforming
multiplication into subtraction and shifting
operations [6].

The Trachtenberg Speed System [7],
developed by Jakow Trachtenberg, employs
specialized rules for rapid computation of
products with minimized carrying
operations. This method, along with Vedic
Mathematics, can enhance the speed and
accuracy for solving complex problems

without the use of dedicated tools such as
calculators or physical devices.

These human-optimized techniques have not
been extensively incorporated into LLM
prompting strategies prior to our work.
However, they represent structured
reasoning patterns that can potentially guide
models through complex calculations. The
compensation method, another mental math
technique, simplifies multiplication of
numbers close to powers of 10 (e.g.,
calculating 998 × 1002 by computing 1000
× 1000 and adjusting for the differences).

The key insight from mental math systems is
their provision of algorithmic scaffolds;
clear procedural frameworks that break
calculation into manageable steps while
minimizing error-prone operations like
carrying. Our work explores how these
cognitive shortcuts, originally developed for
human calculators, can be adapted to
enhance machine reasoning capabilities.

2.4 Self-Verification Approaches in LLMs

Another promising enhancement to LLM
calculation involves self-verification
mechanisms. After producing a solution, the
model confirms the answer by working the
steps in reverse or verifying the result
through alternative methods [8]. For
multiplication problems, this might involve
checking that the product of the last digits
matches the last digit of the computed
answer or verifying that the factorization of
the result includes the original
multiplicands.

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 4 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

Self-verification prompts treat the model's
initial answer as a hypothesis to test,
enabling error detection and correction.
Experimental results demonstrate that such
approaches can substantially improve
accuracy on arithmetic reasoning tasks by
filtering out incorrect answers [8]. This
methodology addresses the vulnerability of
multi-step calculations to error
accumulation, similar to how humans
double-check complex mathematical work.

Recent research has also explored parallel
approaches like Constitutional AI and
debate methods for improving response
reliability [9]. While not specifically focused
on arithmetic, these techniques share the
core principle of structured reflection to
enhance accuracy and could potentially
complement calculation-specific verification
protocols.

2.5 Zero-Shot Prompting versus
Fine-Tuning for Arithmetic Tasks

The trade-offs between zero-shot prompting
and model fine-tuning represent a crucial
consideration for improving LLM
arithmetic. Zero-shot prompting methods
(e.g., CoT, decomposition, self-verification)
can boost general models' accuracy on
large-number multiplication from near-zero
to modest levels but often remain unreliable
for five-to-six-digit exact calculations [3].

In contrast, fine-tuned models can achieve
remarkable arithmetic accuracy. Yang et al.
demonstrated that a specialized 2-billion
parameter model (MathGLM) fine-tuned on

arithmetic problems could attain nearly
100% accuracy on multi-digit multiplication
(exceeding eight digits)—far surpassing
GPT-4's 4.3% accuracy on equivalent tasks
[10]. Similar results have been achieved
with models like Mistriply, which was
fine-tuned on decomposed multiplication
problems, and WizardMath, which
employed reinforcement learning to enhance
mathematical reasoning [11].

Google's Minerva system represents a
hybrid approach, combining domain-focused
training on scientific and mathematical
content with advanced prompting techniques
at inference time [12]. This combination
yielded impressive performance on STEM
benchmarks, highlighting how specialized
training data and strategic prompting can
complement each other.

While fine-tuning clearly produces superior
raw accuracy for arithmetic tasks, prompting
strategies remain valuable for leveraging
existing deployed models without requiring
additional training resources. Our work–
inspired by similar research in LLM prompt
engineering– focuses on maximizing
zero-shot performance through optimized
prompting, enabling immediate
improvements without the computational
and data requirements of fine-tuning
approaches. [13], [14], [15]

Note: We fully acknowledge that modern
tool-use allows AI models to calculate
accurate answers without having to use
chain of thought reasoning. This project
focuses on improving general arithmetic
capabilities for next-gen models.

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 5 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

3. Methodology

3.1 Design Principles for the Structured
Reasoning Prompt

Our structured reasoning prompt was
developed based on four foundational design
principles that address the specific cognitive
challenges LLMs face when performing
complex arithmetic operations.

First, we embraced algorithmic
decomposition, recognizing that
large-integer multiplication becomes
manageable when broken into clearly
defined procedural steps. Unlike general
reasoning tasks where flexibility may be
advantageous, arithmetic operations benefit
from rigid, algorithmic approaches. By
providing explicit computational pathways,
we reduce the model's tendency to take
probabilistic shortcuts that lead to errors.

Second, we incorporated cognitive
scaffolding derived from human mental
calculation techniques. These methods have
evolved specifically to minimize working
memory demands and error
propagation—challenges that similarly
affect LLMs when processing sequential
numerical operations. By adapting these
human-optimized techniques to machine
reasoning, we leverage centuries of
refinement in numerical processing.

Third, we implemented systematic error
prevention through multi-layered
verification protocols. Our analysis of LLM

calculation errors revealed that they
typically originate from specific failure
points: carry operations, place value
alignment, and magnitude estimation. Our
prompt addresses each of these vulnerable
areas with targeted verification mechanisms.

Finally, we designed for cross-architecture
generalization by focusing on fundamental
reasoning patterns rather than
model-specific quirks. This approach
ensures effectiveness across different LLM
implementations, as demonstrated by
comparable performance improvements in
both GPT-4.5 and Claude 3.7.

3.2 Detailed Breakdown of Prompt
Components

3.2.1 Core Mental Math Techniques

Our prompt integrates five complementary
mental math approaches:

Vedic Mathematics (Vertical & Crosswise)
structures multiplication through systematic
generation of partial products by multiplying
digits crosswise and vertically. This
method's key advantage for LLMs is its
clear sequencing of operations, which
prevents the disorganized calculation
patterns often observed in unguided model
outputs. By directing the model to explain
"each overlapping multiplication and its
corresponding carry," we ensure explicit
tracking of intermediate values that might
otherwise be dropped or miscalculated. [6]

Trachtenberg Speed System provides
rule-based shortcuts for specific

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 6 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

multiplication scenarios. While the full
system encompasses various specialized
techniques, we focused on implementing its
core principles of reducing cognitive load
through pattern-based simplifications. For
LLMs, these shortcuts minimize the number
of operations required, directly addressing
one of the primary sources of error
propagation in long calculations. [7]

Strategic Partitioning restricts problem
decomposition to "2-3 major components
maximum, preferably aligned with powers
of 10." This strict limitation prevents
excessive fragmentation—a common failure
pattern we observed in preliminary testing,
where models would break numbers into too
many pieces and then lose track of the
recombination process. The emphasis on
powers of 10 leverages the decimal structure
of our number system to simplify mental
calculations.

Compensation Method exploits proximity
to reference points (typically powers of 10)
to transform difficult multiplications into
simpler ones with adjustments. This
approach is particularly valuable for LLMs,
as it reduces the primary calculation to a
round-number multiplication, followed by
manageable corrections.

Doubling/Halving technique simplifies
multiplication by transforming factors into
more computationally convenient forms.
This method exploits the distributive
property of multiplication in a way that
reduces carrying operations and creates
more regular calculation patterns.

3.2.2 Strategic Partitioning Approach

Strategic partitioning represents perhaps the
most critical element of our approach.
Unlike previous decomposition methods that
break problems into smaller versions of the
same operation, our approach guides the
model to select the optimal technique based
on number characteristics:

For numbers close to powers of 10 (within
2%), the prompt prioritizes the
compensation method, recognizing that
calculations like 998 × 1002 become
significantly simpler when reframed as
(1000 - 2) × (1000 + 2).

For numbers with clean factors, the model is
directed toward doubling/halving
techniques, which can transform unwieldy
multiplications into more manageable ones
(e.g., 25 × 64 becomes 50 × 32).

For general cases where specialized
approaches don't apply, the prompt enforces
strategic partitioning with strict limits: "2-3
components maximum." This constraint
prevents the runaway decomposition that
often leads to recombination errors.

This adaptive selection process represents a
significant advancement over
one-size-fits-all decomposition strategies.
By teaching the model to diagnose number
properties and apply the appropriate
technique, we mimic the flexible approach
of expert human calculators who
instinctively recognize when specialized
methods will be advantageous.

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 7 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

3.2.3 Multi-Layer Verification Protocol

Our multi-layer verification protocol
addresses the error accumulation problem
inherent in sequential calculations. The
protocol comprises four distinct verification
layers:

Strategic Plan Verification requires the
model to articulate its approach before
calculation, creating an explicit
computational roadmap. This planning
phase activates systematic reasoning
pathways within the model's parameter
space, shifting processing away from pure
pattern completion toward structured
algorithmic thinking. Research supports the
use of verification processes to enhance
accuracy [8].

Precision-Focused Calculation implements
specific safeguards against common error
sources:

➔​ Explicit tracking of carrying
operations prevents digit
misalignment

➔​ Exact arithmetic throughout avoids
approximation errors

➔​ Place value alignment during
addition ensures correct positioning
of partial products

➔​ Parallel validation creates
redundancy that catches calculation
mistakes

Step-by-Step Verification introduces
checkpoints after each major calculation
step:

➔​ Magnitude alignment confirms that
partial products fall within expected
numerical ranges

➔​ Cross-checking using different
methods provides computational
redundancy

➔​ Digit-level consistency checks verify
that final digits align with expected
patterns

➔​ Explicit columnar addition with
carries prevents misalignment during
recombination

Final Result Validation requires the model
to evaluate its answer through multiple
lenses:

➔​ Order-of-magnitude confirmation
prevents gross calculation errors

➔​ Alternative calculation approaches
provide verification through different
pathways

➔​ Digit pattern verification checks that
the final digit matches expectations
based on multiplicand properties

➔​ Mathematical property confirmation
validates divisibility, parity, or other
expected attributes

This layered approach ensures that errors at
any stage have multiple opportunities for
detection and correction, dramatically
reducing the likelihood of an incorrect final
result.

3.2.4 Response Format and Structure

The prescribed response format serves both
practical and cognitive purposes:

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 8 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

Plan: By requiring explanation of strategy
selection based on number properties, we
activate the model's analytical capabilities
before computation begins. This primes the
model to approach the problem
systematically rather than probabilistically.

Computation: The structured presentation
of partial multiplications with explicit
tracking of place values and carrying
operations prevents the disorganized
calculations typically observed in unguided
model responses.

Verification: Multi-layered verification,
including magnitude checks and
cross-method validation, creates redundancy
that catches errors before they propagate to
the final answer.

Final Answer: The clear statement of the
final product with explicit confidence
reinforces the model's commitment to
precision.

This structured format forces the model to
demonstrate its work in human-readable
form, which not only facilitates error
detection but also ensures that the
calculation follows a logical progression
rather than relying on pattern-matching
shortcuts. Instead of previous verification
attempts, such as a multi-stage, reinforced
‘Constitutional-AI’ [9], our approach can be
used without multiple stages of feedback to
achieve accurate self-verification.

3.3 Rationale Behind Each Component

Our prompt design is fundamentally
informed by an understanding of how

transformer-based language models process
numerical information. These models do not
perform arithmetic through dedicated
computational circuits as traditional
calculators do; instead, they generate
responses based on statistical patterns
learned during training. This probabilistic
approach to calculation explains why LLMs
can approximate results (getting the
magnitude correct) while making errors in
exact computation.

The core mental math techniques serve to
restructure the calculation process into
patterns that align with the model's training
distribution. By guiding the model to use
Vedic Mathematics or Trachtenberg
methods, we're essentially providing
computational pathways that map well onto
the model's learned representations of
mathematical reasoning. These techniques
effectively transform the unfamiliar task of
large-integer multiplication into sequences
of more familiar operations that appear
frequently in training data.

The strategic partitioning approach
addresses a key limitation of LLMs: their
difficulty maintaining coherence across long
computational sequences. By limiting
decomposition to 2-3 components and
aligning these with powers of 10, we reduce
the working memory demands placed on the
model. This constraint recognizes that while
LLMs have vast parameter spaces, their
effective working memory for sequential
operations is surprisingly limited; much like
humans who typically struggle to keep more
than a few numerical values active in
working memory. Note: Advancements in

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 9 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

model architecture may hold the key to
increasing working memory for these types
of problems.

The multi-layer verification protocol
capitalizes SOTA LLMs' strength in pattern
recognition and consistency checking. While
these models may make calculation errors,
they excel at verifying whether results match
expected patterns or constraints. By
directing this verification capability toward
specific vulnerable points in the calculation
process, we leverage the model's strengths to
compensate for its weaknesses.

Finally, the structured response format
transforms what might otherwise be an
unstructured generation task into a
procedural, step-by-step process that more
closely resembles how mathematical
reasoning is typically presented in textbooks
and educational materials. This familiar
structure activates the model's learned
representations of mathematical exposition,
guiding it to produce calculations in a
format that facilitates both accuracy and
interpretability.

In essence, our methodology doesn't
fundamentally change the model's
computational capabilities but rather
redirects its existing capabilities through
carefully designed prompts that align with
its training distribution while systematically
preventing common error patterns.

We found that much of the apparent
limitation in LLM arithmetic stems not from

inherent architectural constraints but from
suboptimal elicitation of the models' latent
capabilities.

(Figure 0: System Prompt Layout - No
Examples Given for Full Outputs)

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 10 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

4. Experimental Setup

4.1 Models Evaluated

Our experimental evaluation focused on two
leading large language models representing
different architectural lineages and training
approaches:

OpenAI GPT-4.5 Preview (2025-02-27):
The latest publicly available version of
OpenAI's GPT-4.5 series at the time of our
study, representing a significant
advancement over previous iterations. This
model has demonstrated strong capabilities
across various reasoning tasks but, like its
predecessors, struggles with multi-digit
arithmetic operations under standard
prompting conditions.

Anthropic Claude 3.7 Sonnet
(2025-02-19): Anthropic's latest model in
the Claude lineup, known for its thoughtful
reasoning and instruction-following
capabilities. Prior research has indicated that
Claude models show particular weaknesses
in multi-digit arithmetic without specialized
guidance. Early tests with Claude
3.5-Sonnet proved successful, but not to the
same level of accuracy as the current, top
SOTA model from Anthropic.

Both models represent the cutting edge of
publicly available language model
technology, making them ideal candidates
for evaluating potential improvements in
arithmetic reasoning through structured
prompting.

4.2 Dataset Construction

We constructed an evaluation dataset
consisting of 110 randomly generated
large-integer multiplication problems for
this experiment. The dataset was designed to
assess performance on multiplication tasks
involving 5-digit by 6-digit multiplication
problems (also 5-by-5 and 6-by-6 digits).
10,000 to 999,999 x 10,000 to 999,999 is the
range used for this experiment.

To ensure problem diversity and prevent
overfitting to specific patterns, we
implemented the following generation
protocol:

1.​ Random selection of multiplicands
using a uniform distribution across
the specified digit ranges

2.​ Verification that all problems had
unique solutions to prevent
memorization effects

3.​ Equal representation of various
arithmetic challenges, including
numbers requiring multiple carries,
numbers close to powers of 10, and
numbers with varied digit patterns

4.3 Experimental Conditions

We evaluated each model under two distinct
prompting conditions:

Baseline Condition: A standard, minimal
prompt representing typical user interaction:
"You are a helpful assistant. Solve the given
problem accurately." This established the
performance floor for each model, reflecting

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 11 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

how they would handle multiplication tasks
without specialized guidance.

Structured Reasoning Condition: Our
designed prompt incorporating mental math
techniques and verification protocols, as
detailed in Section 3. This prompt contained
fewer than 750 tokens, making it practical
for real-world application without excessive
context consumption. (The full structured
prompt can be found in the Appendix)

To control for potential variability in model
responses, we:

1.​ Used a temperature setting of 0.0 for
all evaluations, eliminating
randomness in model outputs

2.​ Preserved identical problem
formulations across both conditions

3.​ Conducted all evaluations within a
48-hour timeframe to minimize
potential variations due to model
updates

4.4 Evaluation Methodology

Our primary evaluation metric was binary
accuracy—whether the final multiplication
result precisely matched the correct
mathematical answer. We implemented a
stringent evaluation protocol:

1.​ Automated extraction and
normalization of the final numerical
answer from each model response

2.​ Comparison against pre-computed
correct results with zero tolerance for
error

Additionally, we performed manual
qualitative analyses of model responses to
identify:

1.​ Common error patterns under
baseline conditions

2.​ Adherence to the prescribed
reasoning structure in the
experimental condition

3.​ Specific instances where verification
steps successfully caught and
corrected calculation errors

These qualitative insights complement the
quantitative performance metrics, providing
deeper understanding of how the structured
reasoning prompt affects model behavior.

4.5 Resource Constraints and Sampling
Strategy

Given budget constraints typical of
independent research, we adopted a
pragmatic approach to experimentation. Our
final evaluation utilized 110 test problems
per model per condition (440 total model
queries for the chart-data in this report),
providing sufficient statistical power to
assess the intervention's effectiveness while
maintaining reasonable resource
expenditure.

This final evaluation set represents a
refinement based on earlier pilot testing,
during which we iteratively improved our
prompting approach using smaller problem
sets. In total, our research encompassed
approximately 4,000 model queries across
all development and evaluation phases, with
the final 220 queries per model (baseline

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 12 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

and structured conditions) constituting the
formal results presented in this paper.

During experimentation, we noticed an
inability from both Claude 3.7 and GPT 4.5
to solve multiplication problems with
integers beyond a nine-digit limit with the
structured prompt. Baseline prompts were
unable to consistently solve multiplication
problems with six, seven, or eight-digit
numbers.

4.6 Reproducibility Considerations

To facilitate reproduction and extension of
our work, we have developed a
comprehensive Colab Notebook that enables
researchers to:

1.​ Generate new random multiplication
problems to recreate the experiment

2.​ Evaluate performance of various
models (requiring appropriate API
access)

3.​ Analyze results with the same
metrics used in our study

4.​ Experiment with prompt
modifications to further refine the
approach

The notebook includes detailed
documentation, our complete prompt
templates, and visualization tools for
analyzing performance across different
problem types. This resource not only

supports verification of our findings but also
enables the research community to build
upon our work, potentially extending these
techniques to other arithmetic operations or
more complex mathematical reasoning
tasks.

Our methodological design balances
scientific rigor with practical constraints,
providing reliable evidence for the
effectiveness of our approach while
acknowledging the limitations inherent in
studying proprietary models with restricted
access. The consistent and dramatic
performance improvements observed across
both models suggest that our findings
represent a genuine advance in eliciting
accurate arithmetic reasoning from large
language models.

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 13 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

5. Results and Analysis

5.1 Quantitative Performance
Comparison

As illustrated in Figures 1 and 2, both
models demonstrated extraordinary
performance gains when introduced to our
structured system prompt for multiplication:

(Figure 1: Claude 3.7 Sonnet Test Results)

For Anthropic Claude 3.7 Sonnet, accuracy
on 5-6 digit multiplication problems
increased from a baseline of 7.27% to
92.73% with structured reasoning—a 12.75x
improvement. This transformation is
particularly remarkable given Claude's low
baseline performance.

(Note: Baseline accuracy for Claude 3.7
Sonnet ranged from 5%-20% during
experiments depending on problem set size)

OpenAI GPT-4.5 demonstrated a baseline
accuracy of 30.00% during the test, this was
substantially higher than Claude 3.7, yet still
inadequate for reliable arithmetic

applications. When equipped with our
structured reasoning prompt, GPT-4.5's
accuracy rose to 90.91%—a 3.0x
improvement. Both models can achieve
comparable high performance when
provided with appropriate reasoning
frameworks.

(Figure 2: GPT-4.5-Preview Test Results)

The near-identical final performance
(92.73% vs. 90.91%) across these
architecturally distinct models suggests that
our prompt successfully activates general
reasoning capabilities present in advanced
LLMs rather than exploiting model-specific
quirks. This architectural invariance is
particularly significant as it indicates the
potential generalizability of our approach to
other language models.

5.2 Error Analysis and Patterns

Analysis of baseline errors revealed distinct
failure patterns that provide insight into how

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 14 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

unguided LLMs approach complex
arithmetic. We identified three predominant
error categories:

Carry propagation errors were a common
‘choke point’ across both models. These
typically manifested as digit misalignments
during intermediate steps, with errors
cascading through subsequent calculations.
For example, (in our report dataset) the
problem 201996 × 121590, GPT-4.5's
baseline response of 24,570,698,640
(incorrect by ~10 million) resulted from
mishandling carries during partial product
addition.

Magnitude estimation errors were
represented in several failures. In these
cases, models produced answers with
approximately correct leading digits but
increasingly incorrect trailing digits. This
pattern suggests that models develop
reasonable estimates of product magnitudes
but struggle with precise digit-by-digit
calculation without structured guidance.

Algorithmic breakdown errors accounted
for the remaining failures. These
catastrophic errors produced answers orders
of magnitude from the correct result,
typically arising when models attempted
direct multiplication without any apparent
procedural approach. Claude 3.7 exhibited
this pattern more frequently than GPT-4.5,
explaining its lower baseline performance.
Under structured reasoning conditions, the
remaining errors predominantly fell into two
categories:

Computational slips occurred when models
correctly applied the reasoning framework

but made isolated calculation errors that
verification steps failed to catch.

Procedure deviation errors emerged when
models initially followed the structured
approach but reverted to baseline behaviors
midway through calculation. These
accounted for several of the structured
reasoning errors and were more common in
problems with higher computational
complexity.

5.3 Sample Solutions with Different
Prompting Strategies

The qualitative difference between baseline
and structured approaches is striking, as
illustrated by the example problem 201996
× 121590. In the baseline condition, both
models produced incorrect answers despite
apparent attempts at systematic calculation.

Claude 3.7's baseline response exhibits a
common pattern: it presents a direct
multiplication claim without showing
intermediate steps, producing an answer
(24,560,675,640) that differs from the
correct result by 18,000. The absence of
explicit calculation steps makes it
impossible to identify where the error
occurred. While the response appears
confident, the lack of verification allows the
error to persist undetected.

In contrast, Claude 3.7's structured
reasoning response demonstrates a
transformed approach. The model:

1.​ Begins with explicit strategic
partitioning (201996 as 200000 +
1996, 121590 as 120000 + 1590)

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 15 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

2.​ Systematically calculates four partial

products
3.​ Performs careful addition with place

value alignment
4.​ Conducts verification through

magnitude checks, digit-level
validation, and an alternative
calculation approach

The resulting answer (24,560,693,640) is
precisely correct. The structured verification
protocol successfully identified and
prevented potential errors.

Similarly, GPT-4.5's baseline response
attempts a more structured approach than
Claude's but still produces an incorrect
answer (24,570,698,640), overestimating by
approximately 10 million. The response
shows incomplete computation steps and
offers no verification mechanism to detect
the error.

When guided by our prompt, GPT-4.5's
approach transforms dramatically. The
model implements strategic partitioning,
explicitly calculates partial products,
performs careful addition with place value
alignment, and conducts comprehensive
verification including magnitude checks,
digit-level validation, and modular
arithmetic verification. The resulting answer
matches the correct result exactly.

These examples demonstrate that structure,
not just encouragement to be accurate, is the
critical factor in eliciting reliable arithmetic
from LLMs. The baseline prompts instruct
models to be accurate, yet they fail. Only
with structured reasoning guidance do they
achieve near-perfect performance.

5.4 Ablation Studies on Prompt
Components

To identify which components of our
structured reasoning prompt contribute most
significantly to performance improvements,
we conducted ablation studies by
systematically removing or modifying key
elements.

Mental Math Techniques: Our experiments
revealed something fascinating - when we
removed specific mental math techniques
but kept verification protocols, accuracy
dropped below 90% on both Claude 3.7 and
GPT-4.5 (problem sets of 100). This wasn't
just a minor effect; these specialized
calculation methods proved critical to
performance even with verification systems
still in place.

We noticed an interesting pattern: the term
'Vedic' rarely appeared in correct answers,
yet removing Vedic mathematics content
from the prompt caused performance to
decline. This suggested that the structured
prompt was influencing the models' output
distributions in beneficial ways that weren't
immediately obvious. To confirm this, we
systematically removed different mental
math components from our system prompt,
testing performance after each change.
Regardless of the configuration, we couldn't
match the impressive results achieved by our
original prompt-architecture. This
demonstrates that a specific combination of
techniques creates a synergistic effect that's
greater than the sum of its parts. We
encourage readers to reproduce this
experiment in our attached Colab Notebook!

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 16 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

Verification Protocol: Removing the
multi-layer verification protocol while
retaining mental math techniques caused
accuracy to fall on both Claude 3.7 and
GPT-4.5 as well. This significant decrease
reveals verification as a critical component
for our approach, confirming our hypothesis
that error detection and correction
mechanisms are essential for reliable
arithmetic in LLMs.

Strategic Partitioning Constraints: When
we modified the prompt to remove the
constraint limiting decomposition to 2-3
components, accuracy also declined. This
demonstrates that constraining problem
decomposition complexity is surprisingly
important, likely because it prevents the
"decomposition runaway" we observed in
preliminary testing. Future testing will focus
on refining the exact number of components
to limit. Limited resources prevented our
team from testing this singular component
beyond a small test batch.

Response Format Structure: Removing the
explicit response format structure while
retaining all other components resulted in a
decrease in accuracy. This indicates that
even with appropriate techniques and
verification, organizing the response in a
structured format provides significant
benefits for calculation accuracy.

These ablation results confirm that our
prompt's effectiveness stems from the
synergistic interaction of all components. No
single element alone achieves the full
performance improvement, but verification
protocols and specialized mental math

techniques emerge as particularly important
contributors.

5.5 SOTA Model Differences (GPT-4.5 vs.
Claude 3.7)

The comparative performance of GPT-4.5
and Claude 3.7 reveals intriguing differences
in how these architecturally distinct models
approach arithmetic reasoning.

Baseline Capabilities: GPT-4.5's
substantially higher baseline accuracy
(30.00% vs. 7.27%) suggests fundamentally
stronger arithmetic capabilities in its
unguided state, however- larger datasets
may result in lower averages for the baseline
prompt results. If this performance gap is
consistent with community experimentation,
we theorize that disparities could stem from
differences in training data composition,
pre-training objectives, or architectural
decisions that give GPT-4.5 an inherent
advantage in numerical reasoning.

Responsiveness to Prompting: Despite the
baseline gap, Claude 3.7 showed a
proportionally larger improvement with
structured prompting (12.75x vs. 3.0x). This
greater relative gain suggests Claude may
have stronger latent arithmetic capabilities
that remain untapped without explicit
guidance. The convergence of both models
to ~90-93% accuracy indicates that
appropriate prompting can largely eliminate
performance disparities.

Error Distribution: Analysis of the
remaining errors showed distinct patterns
between models. GPT-4.5's errors tended
toward computational slips rather than

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 17 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

procedure deviations. In contrast, Claude
3.7's errors were more evenly distributed
between computational slips and procedure
deviations. This suggests that while GPT-4.5
more reliably follows the structured
approach, Claude sometimes struggles to
maintain procedural consistency throughout
complex calculations.

Verification Effectiveness: The verification
protocol proved more effective for Claude
3.7, successfully catching and correcting
potential errors in several problems. This
higher "self-correction rate" further explains
how Claude overcame its lower baseline
performance to achieve comparable final
accuracy. Here are example-answers from
DATASET_A (problem_0)

EXAMPLE: Claude 3.7 Sonnet -

Baseline Response | FALSE ANSWER

To calculate 201996 × 121590, I'll multiply
these two numbers directly. 201996 ×
121590 = 24,560,675,640 Therefore,
201996 × 121590 = 24,560,675,640.

EXAMPLE: Claude 3.7 Sonnet -

Structured Response | TRUE ANSWER

Multiplying 201996 × 121590 ​
Plan I notice both numbers are 6-digit
values. I'll use strategic partitioning with the
following approach: - Split 201996 into

200000 + 1996 - Split 121590 into 120000
+ 1590 This creates manageable
components while minimizing the number of
partial products. ​
Computation ​
Step 1: Multiply the major components
(200000 × 120000) = 24000000000 (24
billion) ​
Step 2: Calculate cross products
(200000 × 1590) = 318000000 (1996 ×
120000) = 239520000 ​
Step 3: Multiply the minor components
(1996 × 1590) Let's break this down: - 1996
× 1500 = 2994000 - 1996 × 90 = 179640 -
Total: 2994000 + 179640 = 3173640 ​
Step 4: Sum all partial products
24000000000 (major × major) +
318000000 (major × minor) + 239520000
(minor × major) + 3173640 (minor ×
minor) = 24560693640 ​
Verification ​
1. **Magnitude check**: The product of two
6-digit numbers should be around 10-12
digits. Our answer has 11 digits, which is
appropriate. ​
2. **Last-digit check**: - Last digit of
201996 is 6 - Last digit of 121590 is 0 -
Their product must end in 0, which our
answer does. ​
3. **Alternative method**: Let me verify
using a different approach. - 201996 ≈
202000 - 121590 ≈ 121600 - 202000 ×
121600 = 24563200000 - This is very close
to our answer, differing by about 0.01%,
confirming our calculation. ​
Final Answer 201996 × 121590 =
24560693640

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 18 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

6. Discussion

6.1 Interpretation of Results

Our research demonstrates that current
state-of-the-art language models possess
substantially more advanced arithmetic
capabilities than previously recognized. The
dramatic performance improvements (from
7.27% to 92.73% for Claude 3.7 and from
30.00% to 90.91% for GPT-4.5) challenge
fundamental assumptions about the
arithmetic limitations of these models. These
results warrant careful interpretation within
the broader context of LLM capabilities and
limitations. We encourage readers to
recreate our experiment and share their
results!

First, these findings suggest that many
apparent arithmetic failures in SOTA LLMs
stem not from inherent computational
limitations but from suboptimal elicitation
of existing capabilities. While conventional
wisdom has held that these models
fundamentally struggle with multi-digit
calculations, our results indicate that they
can perform such operations with high
reliability when appropriately guided. This
distinction is crucial: what appeared to be a
fundamental architectural limitation may
instead represent a challenge in accessing
latent capabilities through appropriate
prompting. Notably, this approach works
best with larger models such as Claude
3.7-Sonnet and GPT-4.5 and may not be
viable for smaller models.

Second, the near-identical final performance
across architecturally distinct SOTA models
implies that our approach activates general
mathematical reasoning patterns rather than
exploiting model-specific behaviors. This
architectural invariance suggests that
advanced LLMs develop broadly similar
internal representations of arithmetic
operations during training, despite
differences in architecture, training data, and
optimization methods. Such convergence
indicates that these models may be learning
generalizable mathematical reasoning
patterns that transcend implementation
details.

Third, our results highlight a critical
distinction between mathematical
knowledge and mathematical reasoning.
Prior to our intervention, these models
clearly possessed the requisite knowledge
for large-integer arithmetic—they
understand place value, the mechanics of
multiplication, and carrying operations.
However, they lacked the procedural
framework to apply this knowledge reliably.
This distinction parallels human
mathematical cognition, where procedural
knowledge (how to perform operations)
complements declarative knowledge
(understanding mathematical concepts).

6.2 Theoretical Explanations for
Effectiveness

The exceptional effectiveness of our
structured reasoning prompt invites

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 19 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

theoretical consideration of how LLMs
process numerical information and why
specific prompting strategies dramatically
improve performance.

From a cognitive science perspective, our
approach essentially provides models with
an "external working memory" through
structured prompting. Human working
memory limitations often constrain mental
arithmetic performance; similarly, LLMs
may struggle to maintain coherence across
long computational sequences without
external scaffolding. By decomposing
problems systematically and tracking
intermediate results explicitly, our prompt
effectively expands the model's functional
working memory, allowing it to manage
complex calculations that would otherwise
exceed its capabilities.

From a computational perspective, our
approach transforms an ill-structured
probability estimation task into a
well-structured algorithmic procedure.
LLMs fundamentally operate by predicting
tokens based on learned probability
distributions. When asked to perform
arithmetic without guidance, they may
default to pattern-matching against similar
problems in their training data rather than
executing precise computational steps. Our
prompt redirects this pattern-matching
tendency toward procedural patterns
(systematic decomposition, step-by-step
calculation, and verification) that better
align with the algorithmic nature of exact
arithmetic.

From an information theory standpoint, the
verification protocols in our prompt

introduce redundancy that improves error
detection and correction. Like
error-correcting codes in communication
systems, our multi-layered verification
creates informational redundancy that allows
the model to identify and rectify potential
mistakes. This redundancy proves
particularly valuable in arithmetic, where a
single error can propagate through an entire
calculation.

Finally, our results may reflect successful
alignment between the prompt's structure
and the implicit computational graphs
formed during LLM inference. Recent
theoretical work suggests that
transformer-based models can implement
algorithmic reasoning by forming
computational graphs across attention
layers. Our structured approach may
facilitate the emergence of these
computational graphs, essentially helping
the model "compile" the appropriate
algorithmic procedure from its parametric
knowledge.

6.3 Limitations of the Approach

Despite the substantial improvements
demonstrated, our approach has several
important limitations that warrant
acknowledgment.

First, the prompt's effectiveness diminishes
for extremely large numbers (beyond
9-digits), where the computational
complexity would exceed even a
well-structured approach's capabilities. As
problem complexity increases, the
likelihood of computational slips rises, and
the model may struggle to maintain

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 20 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

procedural consistency throughout
increasingly lengthy calculations. This
constraint represents a practical upper bound
on the complexity of operations achievable
through prompting alone.

Second, our method incurs a significant
token overhead compared to direct
calculation requests. The structured
reasoning prompt itself comprises
approximately 750 tokens, and the resulting
responses occasionally require 500+ tokens
to express the complete calculation process.
While this overhead is justified by the
dramatic accuracy improvements, it imposes
practical constraints on applications where
token efficiency is critical, such as batch
processing of multiple calculations or
deployment in token-limited environments.

Third, our approach depends on reliable
instruction-following capabilities in the
target models. The consistently high
performance we observed in GPT-4.5 and
Claude 3.7 may not generalize to smaller or
less capable models (such as GPT-4o) that
might struggle to adhere to complex
prompting protocols. This limitation restricts
the approach's applicability to advanced
models with strong instruction-following
abilities.

Finally, while our methodology substantially
improves multiplication accuracy, its direct
transferability to other arithmetic operations
remains unverified. Operations like division,
exponentiation, or root extraction might
require operation-specific modifications to
our approach, as they involve different
computational challenges and error patterns.

6.4 Broader Implications for LLM
Reasoning Capabilities

Our findings have profound implications for
understanding LLM reasoning capabilities
more generally, extending beyond arithmetic
to other domains requiring systematic
thinking.

First, these results challenge the prevailing
dichotomy between "soft" natural language
tasks and "hard" procedural or algorithmic
reasoning. If appropriate prompting can
transform LLMs from unreliable to
near-perfect arithmetic calculators, similar
transformations may be possible in other
domains traditionally considered
challenging for these models, such as logical
deduction, causal reasoning, or algorithmic
problem-solving. This suggests a continuum
of reasoning capabilities in LLMs,
accessible through increasingly
sophisticated elicitation techniques.

Second, our work demonstrates that LLMs
can effectively implement human cognitive
strategies when properly guided. The mental
math techniques incorporated in our prompt
(Vedic mathematics, Trachtenberg system,
strategic partitioning) were originally
developed to enhance human calculation.
Their successful adaptation to LLMs
suggests that human-inspired cognitive
strategies may provide valuable blueprints
for improving machine reasoning more
broadly. This cross-pollination between
cognitive science and artificial intelligence
represents a promising avenue for future
research.

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 21 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

Third, the effectiveness of structured
verification protocols in our approach
highlights the importance of metacognitive
processes in reliable reasoning. By
incorporating explicit error-checking
mechanisms, our prompt essentially adds a
self-monitoring dimension to the model's
reasoning process. This metacognitive layer
proves crucial for reliable performance,
suggesting that similar verification
mechanisms might enhance reasoning
reliability across various domains beyond
arithmetic.

6.5 Potential Applications and Future
Directions

The practical applications of reliable
arithmetic in LLMs extend across numerous
domains where computational accuracy is
essential but external calculators may be
impractical or undesirable.

In educational contexts, LLMs with
enhanced arithmetic capabilities could
provide step-by-step mathematical
instruction with reliable results, particularly
valuable for explaining long multiplication
techniques to students.

Financial applications often require precise
calculations embedded within natural
language understanding. Enhanced
arithmetic reliability would allow LLMs to
perform financial projections, interest
calculations, or budget analyses directly
within conversational interfaces, without
requiring external computational tools.

Scientific and engineering applications
frequently involve numerical calculations

integrated with domain knowledge.
Improved arithmetic reliability would enable
more seamless integration of qualitative
reasoning and quantitative analysis within
these domains, potentially expanding LLMs'
utility in research and development contexts.

Our research also opens several promising
future directions. The most immediate
extension would involve adapting our
approach to other arithmetic operations,
particularly division, exponentiation, and
complex operations like logarithms of
trigonometric functions. We hypothesize that
the core principles of our approach
(structured decomposition, systematic
calculation, and multi-layered verification)
could generalize across operations with
appropriate modifications.

A more ambitious extension would develop
a comprehensive "mathematical reasoning
prompt library" covering diverse
mathematical domains beyond arithmetic,
including algebra, calculus, probability, and
statistics. Such a library could dramatically
enhance LLMs' mathematical reasoning
capabilities across the board, substantially
expanding their utility in STEM fields.
Additionally, category theory may hold
interesting insights for navigating abstract
mathematical frameworks with natural
language (using functors and isomorphisms
to establish complicated relationships).

From a theoretical perspective, future work
could investigate the cognitive mechanisms
underlying our approach's effectiveness.
Controlled experiments isolating specific
prompt components could provide deeper
insights into how different elements

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 22 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

contribute to performance improvements,
potentially informing more fundamental
advances in LLM design.

Finally, our findings invite broader
exploration of how structured prompting
might enhance reasoning in domains beyond
mathematics. If similar approaches could
improve logical reasoning, causal analysis,
or symbolic manipulation, they might
substantially expand the practical
applications of current LLMs without
requiring architectural changes or additional
training.

Our research demonstrates that through
carefully structured prompting, current
state-of-the-art language models can
perform complex arithmetic operations with
expert-level accuracy. This capability,
previously thought beyond these models'
reach, emerges through a synergistic
combination of human-inspired mental
calculation techniques and systematic
verification protocols. As the field continues
to explore the boundaries of LLM
capabilities, our work suggests that many
apparent limitations may be overcome
through increasingly sophisticated elicitation
strategies that align with how these models
process and manipulate information.

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 23 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

7. Conclusion

7.1 Summary of Key Findings

Our structured reasoning prompt (integrating
mental math techniques with systematic
verification protocols) transformed the
arithmetic performance of state-of-the-art
models in dramatic fashion:

➔​ Claude 3.7 Sonnet's accuracy on
large-integer multiplication
improved from 7.27% to 92.73%

➔​ GPT-4.5's accuracy increased from
30.00% to 90.91%

➔​ Both models converged to similar
high performance levels despite
significant baseline differences

➔​ The approach required no model
fine-tuning or external
computational tools

➔​ The structured prompt remained
under 750 tokens, making it
practical for real-world applications

(See Dataset A to View Results)

7.2 Significance and Implications

The significance of these findings extends
beyond arithmetic to fundamental questions
about language model capabilities and
limitations. Most importantly, our results
demonstrate that many apparent limitations
in language models may reflect inadequate

elicitation strategies rather than inherent
architectural constraints. Our research also
bridges cognitive science and artificial
intelligence in meaningful ways. The
success of human-inspired mental
calculation techniques in improving machine
performance suggests valuable synergies
between these fields. Just as human
cognitive strategies have evolved to
overcome our mental processing limitations,
similar approaches can enhance artificial
systems facing comparable constraints.

7.3 Future Research Directions

We plan on expanding to other arithmetic
operations, particularly division,
exponentiation, and functions like square
roots or logarithms. Each operation presents
unique challenges that may require
specialized adaptations of our approach,
potentially yielding insights into the specific
computational mechanisms underlying
different mathematical processes in
language models.

As language model capabilities continue to
advance, the boundary between symbolic
and neural approaches to reasoning
increasingly blurs. Our work suggests that
through careful alignment between
prompting strategies and model capabilities,
current neural language models can achieve
levels of mathematical reliability previously
thought possible only with symbolic systems
or specialized training.

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 24 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

8. References

1.​ Golkar, S., Pettee, M., Eickenberg, M., Bietti, A., Cranmer, M., Krawezik, G.,
Lanusse, F., McCabe, M., Ohana, R., Parker, L., Régaldo‐Saint Blancard, B.,
Tesileanu, T., Cho, K., & Ho, S. (2023).​
 xVal: A Continuous Numerical Tokenization for Scientific Language Models
[arXiv:2310.02989]. Retrieved from https://arxiv.org/abs/2310.02989​

2.​ Gambardella, A., Iwasawa, Y., & Matsuo, Y. (2024).​
 Language Models Do Hard Arithmetic Tasks Easily and Hardly Do Easy Arithmetic
Tasks [ACL Anthology]. Retrieved from https://aclanthology.org/2024.acl-short.8/​

3.​ Zhang, C., Du, L., Cao, D., Fu, Q., & Liu, Y. (2024).​
 Prompting Large Language Models with Divide-and-Conquer Program for Discerning
Problem Solving [arXiv:2402.05359]. Retrieved from https://arxiv.org/abs/2402.05359​

4.​ Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q. V.,
& Zhou, D. (2022). ​
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
[arXiv:2201.11903]. Retrieved from https://arxiv.org/abs/2201.11903​

5.​ Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., &
Zhou, D. (2022). ​
Self-Consistency Improves Chain of Thought Reasoning in Language Models
[arXiv:2203.11171]. Retrieved from https://arxiv.org/abs/2203.11171​

6.​ Tirthaji, S. B. K., & Agarwala, V. S. (1965).​
 Vedic Mathematics or Sixteen Simple Mathematical Formulae from the Vedas | Available
Online | (Note: We highly recommend reading this! Who knows what the community can
do with applied Vedic Mathematics & AI…)​

7.​ Trachtenberg, J. (1960). ​
The Trachtenberg Speed System of Basic Mathematics. Garden City, NY: Doubleday &
Company, Inc.​

8.​ Weng, Y., Zhu, M., Xia, F., Li, B., He, S., Liu, S., Sun, B., Liu, K., & Zhao, J. (2023).
Large language models are better reasoners with self-verification [arXiv:2212.09561].
Retrieved from https://arxiv.org/abs/2212.09561​

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 25 of 29

https://arxiv.org/abs/2310.02989
https://aclanthology.org/2024.acl-short.8/
https://arxiv.org/abs/2402.05359
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2203.11171
https://www.ms.uky.edu/~sohum/ma330/files/manuscripts/Tirthaji_S.B.K.,_Agarwala_V.S.-Vedic_mathematics_or_sixteen_simple_mathematical_formulae_from_the_Vedas-Orient_Book_Distributors_1981.pdf
https://arxiv.org/abs/2212.09561

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

9.​ Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie,

A., Mirhoseini, A., McKinnon, C., Chen, C., Olsson, C., Lanham, D., Saunders, D.,
Tran‐Johns, E., Riley, F., Perez, G., Hatfield‐Dodds, J., … Kaplan, J. (2022).​
Constitutional AI: Harmlessness from AI Feedback [arXiv:2212.08073]. Retrieved from
https://arxiv.org/abs/2212.08073​

10.​Yang, Z., Ding, M., Lv, Q., Jiang, Z., He, Z., Guo, Y., Bai, J., & Tang, J. (2023). ​
GPT can solve mathematical problems without a calculator [arXiv:2309.03241].
https://doi.org/10.48550/arXiv.2309.03241​

11.​Luo, H., Sun, Q., Xu, C., Zhao, P., Lou, J., Tao, C., Geng, X., Lin, Q., Chen, S., Tang,
Y., & Zhang, D. (2023). ​
WizardMath: Empowering mathematical reasoning for large language models via
reinforced Evol-Instruct [arXiv:2308.09583]. Retrieved from
https://arxiv.org/abs/2308.09583​

12.​Dyer, E., & Gur-Ari, G. (2022, June 30). ​
Minerva: Solving quantitative reasoning problems with language models. Google
Research Blog. Retrieved from
https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-langu
age-models/​

13.​Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022).​
 Large Language Models are Zero-Shot Reasoners [arXiv:2205.11916]. Retrieved from
https://arxiv.org/abs/2205.11916​

14.​Chervonyi, Y., Trinh, T. H., Olšák, M., Yang, X., Nguyen, H., Menegali, M., Jung, J.,
Verma, V., Le, Q. V., & Luong, T. (2025).​
 Gold-medalist Performance in Solving Olympiad Geometry with AlphaGeometry2
[arXiv:2502.03544]. Retrieved from https://arxiv.org/abs/2502.03544​

15.​Haq, S., Chhaya, N., Pandey, P., & Bhattacharya, P. (2025).​
 Is your LLM trapped in a Mental Set? Investigative study on how mental sets affect the
reasoning capabilities of LLMs [arXiv:2501.11833]. Retrieved from
https://arxiv.org/abs/2501.11833

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 26 of 29

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://doi.org/10.48550/arXiv.2309.03241
https://doi.org/10.48550/arXiv.2309.03241
https://arxiv.org/abs/2309.03241
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/
https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/
https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2502.03544
https://arxiv.org/abs/2501.11833
https://arxiv.org/abs/2501.11833

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

9. Appendix

Problems and answers for charts found in this report can be found at www.bitforgedynamics.com

Experiment Results:

We tested 4000+ multiplication problems during our experiment, refining our approach to build
our reproducible Colab Notebook. Chart Data may be reproduced with independent experiments.

DATASET_A:

(Download the CSV file from our website)

Chart-Data in Report | 440 Total Results | 220 Unique Problems​
​
​ - GPT-4.5-Preview | 110 Baseline Prompted Results | 110 Structured Prompted Results

- Claude 3.7-Sonnet | 110 Baseline Prompted Results | 110 Structured Prompted Results

Colab Notebook: A reproducible experiment is available at www.bitforgedynamics.com under
our current projects. This project creates a small dataset to test custom prompts against baseline
model capabilities.

SYSTEM PROMPTS USED:

Please try to beat our score with the Colab Notebook example, you can directly edit these
pre-loaded prompts to recreate our experiments. You may also create a zero-shot test by copying
the structured system prompt and supplying a multiplication problem inside of the native UI on
OpenAI or Anthropic’s private platforms.

baseline_system_prompt = "You are a helpful assistant. Solve the given problem accurately."

structured_reasoning_system_prompt = """You are a master of advanced mental arithmetic,
combining human-like intuition with algorithmic precision. Your approach integrates several
proven mental math techniques with enhanced error prevention strategies:

Core Techniques

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 27 of 29

http://www.bitforgedynamics.com
http://www.bitforgedynamics.com

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

Vedic Mathematics (Vertical & Crosswise): Use this method to systematically generate
partial products by multiplying digits crosswise and vertically. Explain each overlapping
multiplication and its corresponding carry.

Trachtenberg Speed System: When possible, employ rule-based shortcuts (e.g., for
multiplications by 9 or 11) to reduce cognitive load. Detail how each shortcut transforms the
problem.

Strategic Partitioning: Break down numbers into 2-3 major components maximum,
preferably aligned with powers of 10 (e.g., represent 567892 as 500000 + 67000 + 892). Avoid
excessive fragmentation that increases error probability.

Compensation Method: When a number is within 2% of a power of 10 (e.g., 998712 ≈
1000000 - 1288), use subtraction-based compensation to simplify calculations. This is especially
effective for numbers close to powers of 10.

Doubling/Halving: Where applicable, simplify multiplication by halving one factor while
doubling the other, then adjust for any differences.

Enhanced Verification Protocol

Your task is to multiply large numbers (up to 9-digit by 9-digit) with a detailed chain-of-thought
explanation using no more than 500 tokens for reasoning. Your output must include:

1. Strategic Plan

Briefly outline your approach, selecting the optimal technique based on the numbers'
characteristics:

- For numbers close to powers of 10: Prioritize the compensation method

- For numbers with clean factors: Consider doubling/halving

- For general cases: Use strategic partitioning with 2-3 components maximum

2. Precision-Focused Calculation

Execute the multiplication with these enhanced safeguards:

- Maintain explicit tracking of carrying operations

- Use exact arithmetic throughout (avoid approximation symbols like ≈)

- When adding multi-digit numbers, align place values explicitly

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 28 of 29

Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov

- For cross-products, perform parallel validation using a different method

3. Multi-Layer Verification

After each major calculation step:

- Verify magnitude alignment (e.g., "This partial product should be in the billions range")

- Cross-check using a different calculation method

- Validate last digits for consistency (e.g., verify that last digits multiply correctly)

- Implement columnar addition for combining partial products with explicit carries

4. Final Result Validation

Before presenting the final answer:

- Compare against initial estimate to confirm order of magnitude

- Verify using a completely different approach if possible

- Check that the final digit matches the expected pattern

- Confirm the result's mathematical properties (e.g., divisibility, parity)

Response Format

When answering a multiplication query, your response should follow this structured format:

Plan: Explain your strategy selection based on the numbers' properties, limiting to 2-3
partitions.

Computation: Show the work for each partial multiplication with explicit place value
tracking and carrying operations.

Verification: Implement multi-layered verification including magnitude checks,
cross-method validation, and digit-level verification.

Final Answer: Clearly state the final product with high confidence.

Always strive for clarity, precision, and a human-like explanation of your mental process. Your
chain-of-thought should be logical and reflect expert reasoning in mental math, while
systematically preventing common error patterns."""

 © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com Page 29 of 29

	Organization: Bitforge Dynamics | March 21, 2025 | Version 1.0​Author: Brock Daily | Co-Author: Daniel Rubinov | bitforgedynamics.com/contact
	Abstract
	
	1. Introduction
	2. Related Work
	2.1 LLM Arithmetic Capabilities and Limitations Studies
	2.2 Chain-of-Thought and Strategic Prompting Approaches Research
	2.3 Mental Math Techniques and Their Application to LLMs
	2.4 Self-Verification Approaches in LLMs
	2.5 Zero-Shot Prompting versus Fine-Tuning for Arithmetic Tasks

	3. Methodology
	3.1 Design Principles for the Structured Reasoning Prompt
	3.2 Detailed Breakdown of Prompt Components
	3.2.1 Core Mental Math Techniques
	3.2.2 Strategic Partitioning Approach
	3.2.3 Multi-Layer Verification Protocol
	3.2.4 Response Format and Structure

	3.3 Rationale Behind Each Component

	
	4. Experimental Setup
	4.1 Models Evaluated
	
	4.2 Dataset Construction
	4.3 Experimental Conditions
	4.4 Evaluation Methodology
	4.5 Resource Constraints and Sampling Strategy
	4.6 Reproducibility Considerations

	5. Results and Analysis
	5.1 Quantitative Performance Comparison
	5.2 Error Analysis and Patterns
	5.3 Sample Solutions with Different Prompting Strategies
	5.4 Ablation Studies on Prompt Components
	5.5 SOTA Model Differences (GPT-4.5 vs. Claude 3.7)

	
	6. Discussion
	6.1 Interpretation of Results
	6.2 Theoretical Explanations for Effectiveness
	6.3 Limitations of the Approach
	6.4 Broader Implications for LLM Reasoning Capabilities
	6.5 Potential Applications and Future Directions

	
	7. Conclusion
	7.1 Summary of Key Findings
	7.2 Significance and Implications
	7.3 Future Research Directions

	
	8. References
	9. Appendix

