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Abstract 

We’ve discovered a breakthrough approach that enhances AI reasoning for multiplying large 
numbers. Our structured reasoning prompt enables leading AI models like Claude 3.7 and GPT 
4.5 to achieve over 90% accuracy on multiplication problems with five or six digits. Our unique 
system-prompt (under 750 tokens) combines human mental-math techniques with a systematic 
error-checking process. Without any model modifications or external calculators, we've 
harnessed distribution patterns that give AI the ability to reason through complex calculations 
step-by-step with abstracted, natural language. By structuring the reasoning process similarly to 
how expert human calculators think, we've dramatically improved performance on what were 
considered inherently difficult tasks for language models. This report includes an immediately 
applicable technique that makes state-of-the-art AI systems more reliable for real-world 
computational tasks, while revealing how human-inspired thinking patterns can be effectively 
translated into AI prompts.  
 
Accuracy on Large-Integer Multiplication Problems (10,000 to 999,999 x 10,000 to 999,999) 
 

 

 
 
 
 
 
 
 
 
 

*Chart Data Available | 2 Models | 440 Tests Analyzed | 220 Unique Problems Total* 
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1. Introduction 

Large Language Models (LLMs) have 
demonstrated remarkable capabilities across 
diverse domains, yet they consistently 
struggle with fundamental arithmetic 
operations that humans master in elementary 
school. While these models can generate 
eloquent prose, engage in nuanced 
reasoning, and access vast knowledge 
repositories, their performance deteriorates 
dramatically when confronted with 
multi-digit multiplication problems. For 
instance, recent studies show that GPT-4 
achieves low scores for four-digit problems 
and near zero for five-digit calculations [1]. 

This arithmetic deficiency represents a 
significant limitation for deploying LLMs in 
domains requiring computational reliability. 
Financial analysts examining cash flow 
projections, engineers calculating material 
requirements, scientists modeling physical 
phenomena, and educators demonstrating 
mathematical concepts all require systems 
that can perform basic arithmetic with high 
precision. The stark contrast between LLMs' 
sophisticated language capabilities and their 
arithmetic shortcomings raises fundamental 
questions about their reasoning processes 
and how these processes might be enhanced. 

Several approaches have emerged to address 
this limitation. Chain-of-thought prompting 
encourages models to generate intermediate 
reasoning steps, showing modest 
improvements for some mathematical tasks. 
More structured techniques such as 

divide-and-conquer prompting [3] 
systematically break problems into 
manageable components, achieving better 
results for specific arithmetic operations. 
Meanwhile, other researchers have pursued 
fine-tuning strategies, with Yang et al. [10] 
demonstrating that specialized training can 
enable even a 2-billion parameter model 
(MathGLM) to achieve near-perfect 
accuracy on complex multiplications, far 
surpassing GPT-4's performance. However, 
fine-tuning requires extensive computational 
resources and specialized datasets, making it 
impractical for many users. 

In this paper, we present a novel structured 
reasoning prompt that dramatically improves 
large-integer multiplication accuracy in 
state-of-the-art (SOTA) LLMs. 

Our key contributions include: 

1.​ A structured reasoning prompt 
comprising fewer than 750 tokens 
that elevates large-integer 
multiplication accuracy 

2.​ Integration of human-inspired mental 
arithmetic techniques with LLM 
prompting, showing that cognitive 
shortcuts for AI models really work  

3.​ A multi-layered verification protocol 
that systematically prevents common 
error patterns in problem-solving 

4.​ A publicly available implementation 
that allows researchers and 
practitioners to reproduce our results 
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2. Related Work 

2.1 LLM Arithmetic Capabilities and 
Limitations Studies 

As we highlighted in the introduction, 
research by Golkar et al. revealed that 
previous, cutting-edge models like GPT-4 
experienced performance-loss on four-digit 
problems and generated nearly zero accurate 
results for five-digit calculations [1]. This 
decline in accuracy with increasing digit 
length suggests fundamental limitations in 
how these models process numerical 
operations. This report focuses on new 
models with advanced generalization such 
as GPT-4.5 from Open AI and Clause 3.7 
Sonnet from Anthropic. Our tests with 
GPT-4o failed to witness significant 
improvement (with our structured prompt). 
However, GPT-4.5 gained 3x relative 
improvement for solving complicated 
multiplication problems in the discussed 
experiment (report data available). 

Analysis indicates that LLMs often correctly 
estimate the magnitude of large products 
(e.g., the first digit) yet fail on exact 
arithmetic, frequently miscalculating the 
final digits [2]. This pattern suggests these 
models develop some approximate sense of 
multiplication from training data regularities 
but cannot reliably execute precise 
multi-step calculations with standard 
prompting approaches. 

The underlying architecture of 
transformer-based LLMs theoretically 
possesses the capacity to represent complex 
operations like multiplication. However, 

standard training procedures have not 
yielded robust multi-digit calculation 
abilities [3]. Models tend to confabulate or 
latch onto patterns instead of computing 
exact results, with even minor increases in 
digit count causing cascading errors 
throughout the calculation [1]. 

2.2 Chain-of-Thought and Strategic 
Prompting Approaches Research 

A significant advancement in prompting 
techniques has been chain-of-thought (CoT) 
prompting, especially those introduced by 
Wei et al. [4]. This approach encourages 
models to work through solutions in 
intermediate steps, similar to human 
calculation methods. By providing examples 
of multi-step reasoning, CoT prompting has 
demonstrated substantial improvements on 
mathematical word problems and arithmetic 
tasks. For multiplication specifically, CoT 
prompting involves explicitly generating 
partial products and performing their 
addition sequentially, making the 
computation explicit and reducing error 
probability. 

Building on CoT principles, Zhang et al. 
developed divide-and-conquer (DaC) 
prompting [3], which guides models to 
recursively split large multiplications into 
manageable subproblems, solve each 
independently, and then combine the results. 
In experiments with five-digit 
multiplication, this structured decomposition 
approach outperformed standard CoT and 
other baseline methods, significantly 
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improving accuracy on both GPT-4 and 
GPT-3.5. The success of DaC prompting 
stems from its focus on repetitive sub-tasks 
in isolation, helping models avoid 
overwhelming complexity that leads to 
hallucination and error. 

Other noteworthy prompting strategies 
include least-to-most prompting, which 
breaks problems into progressively more 
complex sub-questions, and self-consistency 
approaches that generate multiple solution 
paths to increase reliability [5]. While these 
methods show improvements over baseline 
prompting, they still fall short of achieving 
the near-perfect accuracy required for 
practical applications involving large-integer 
arithmetic. 

2.3 Mental Math Techniques and Their 
Application to LLMs 

Human mental calculation techniques offer 
valuable inspiration for enhancing LLM 
arithmetic. Methods from Vedic 
Mathematics provide systematic approaches 
for multiplication that reduce cognitive load. 
For example, the Nikhilam sutra enables 
efficient calculation when numbers are close 
to powers of 10 by transforming 
multiplication into subtraction and shifting 
operations [6].  

The Trachtenberg Speed System [7], 
developed by Jakow Trachtenberg, employs 
specialized rules for rapid computation of 
products with minimized carrying 
operations. This method, along with Vedic 
Mathematics, can enhance the speed and 
accuracy for solving complex problems 

without the use of dedicated tools such as 
calculators or physical devices. 

These human-optimized techniques have not 
been extensively incorporated into LLM 
prompting strategies prior to our work. 
However, they represent structured 
reasoning patterns that can potentially guide 
models through complex calculations. The 
compensation method, another mental math 
technique, simplifies multiplication of 
numbers close to powers of 10 (e.g., 
calculating 998 × 1002 by computing 1000 
× 1000 and adjusting for the differences). 

The key insight from mental math systems is 
their provision of algorithmic scaffolds; 
clear procedural frameworks that break 
calculation into manageable steps while 
minimizing error-prone operations like 
carrying. Our work explores how these 
cognitive shortcuts, originally developed for 
human calculators, can be adapted to 
enhance machine reasoning capabilities. 

2.4 Self-Verification Approaches in LLMs 

Another promising enhancement to LLM 
calculation involves self-verification 
mechanisms. After producing a solution, the 
model confirms the answer by working the 
steps in reverse or verifying the result 
through alternative methods [8]. For 
multiplication problems, this might involve 
checking that the product of the last digits 
matches the last digit of the computed 
answer or verifying that the factorization of 
the result includes the original 
multiplicands. 
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Self-verification prompts treat the model's 
initial answer as a hypothesis to test, 
enabling error detection and correction. 
Experimental results demonstrate that such 
approaches can substantially improve 
accuracy on arithmetic reasoning tasks by 
filtering out incorrect answers [8]. This 
methodology addresses the vulnerability of 
multi-step calculations to error 
accumulation, similar to how humans 
double-check complex mathematical work. 

Recent research has also explored parallel 
approaches like Constitutional AI and 
debate methods for improving response 
reliability [9]. While not specifically focused 
on arithmetic, these techniques share the 
core principle of structured reflection to 
enhance accuracy and could potentially 
complement calculation-specific verification 
protocols. 

2.5 Zero-Shot Prompting versus 
Fine-Tuning for Arithmetic Tasks 

The trade-offs between zero-shot prompting 
and model fine-tuning represent a crucial 
consideration for improving LLM 
arithmetic. Zero-shot prompting methods 
(e.g., CoT, decomposition, self-verification) 
can boost general models' accuracy on 
large-number multiplication from near-zero 
to modest levels but often remain unreliable 
for five-to-six-digit exact calculations [3]. 

In contrast, fine-tuned models can achieve 
remarkable arithmetic accuracy. Yang et al. 
demonstrated that a specialized 2-billion 
parameter model (MathGLM) fine-tuned on 

arithmetic problems could attain nearly 
100% accuracy on multi-digit multiplication 
(exceeding eight digits)—far surpassing 
GPT-4's 4.3% accuracy on equivalent tasks 
[10]. Similar results have been achieved 
with models like Mistriply, which was 
fine-tuned on decomposed multiplication 
problems, and WizardMath, which 
employed reinforcement learning to enhance 
mathematical reasoning [11]. 

Google's Minerva system represents a 
hybrid approach, combining domain-focused 
training on scientific and mathematical 
content with advanced prompting techniques 
at inference time [12]. This combination 
yielded impressive performance on STEM 
benchmarks, highlighting how specialized 
training data and strategic prompting can 
complement each other. 

While fine-tuning clearly produces superior 
raw accuracy for arithmetic tasks, prompting 
strategies remain valuable for leveraging 
existing deployed models without requiring 
additional training resources. Our work– 
inspired by similar research in LLM prompt 
engineering– focuses on maximizing 
zero-shot performance through optimized 
prompting, enabling immediate 
improvements without the computational 
and data requirements of fine-tuning 
approaches. [13], [14], [15] 

Note: We fully acknowledge that modern 
tool-use allows AI models to calculate 
accurate answers without having to use 
chain of thought reasoning. This project 
focuses on improving general arithmetic 
capabilities for next-gen models.  
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3. Methodology 

3.1 Design Principles for the Structured 
Reasoning Prompt 

Our structured reasoning prompt was 
developed based on four foundational design 
principles that address the specific cognitive 
challenges LLMs face when performing 
complex arithmetic operations. 

First, we embraced algorithmic 
decomposition, recognizing that 
large-integer multiplication becomes 
manageable when broken into clearly 
defined procedural steps. Unlike general 
reasoning tasks where flexibility may be 
advantageous, arithmetic operations benefit 
from rigid, algorithmic approaches. By 
providing explicit computational pathways, 
we reduce the model's tendency to take 
probabilistic shortcuts that lead to errors. 

Second, we incorporated cognitive 
scaffolding derived from human mental 
calculation techniques. These methods have 
evolved specifically to minimize working 
memory demands and error 
propagation—challenges that similarly 
affect LLMs when processing sequential 
numerical operations. By adapting these 
human-optimized techniques to machine 
reasoning, we leverage centuries of 
refinement in numerical processing. 

Third, we implemented systematic error 
prevention through multi-layered 
verification protocols. Our analysis of LLM 

calculation errors revealed that they 
typically originate from specific failure 
points: carry operations, place value 
alignment, and magnitude estimation. Our 
prompt addresses each of these vulnerable 
areas with targeted verification mechanisms. 

Finally, we designed for cross-architecture 
generalization by focusing on fundamental 
reasoning patterns rather than 
model-specific quirks. This approach 
ensures effectiveness across different LLM 
implementations, as demonstrated by 
comparable performance improvements in 
both GPT-4.5 and Claude 3.7. 

3.2 Detailed Breakdown of Prompt 
Components 

3.2.1 Core Mental Math Techniques 

Our prompt integrates five complementary 
mental math approaches: 

Vedic Mathematics (Vertical & Crosswise) 
structures multiplication through systematic 
generation of partial products by multiplying 
digits crosswise and vertically. This 
method's key advantage for LLMs is its 
clear sequencing of operations, which 
prevents the disorganized calculation 
patterns often observed in unguided model 
outputs. By directing the model to explain 
"each overlapping multiplication and its 
corresponding carry," we ensure explicit 
tracking of intermediate values that might 
otherwise be dropped or miscalculated. [6] 

Trachtenberg Speed System provides 
rule-based shortcuts for specific 
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multiplication scenarios. While the full 
system encompasses various specialized 
techniques, we focused on implementing its 
core principles of reducing cognitive load 
through pattern-based simplifications. For 
LLMs, these shortcuts minimize the number 
of operations required, directly addressing 
one of the primary sources of error 
propagation in long calculations. [7] 

Strategic Partitioning restricts problem 
decomposition to "2-3 major components 
maximum, preferably aligned with powers 
of 10." This strict limitation prevents 
excessive fragmentation—a common failure 
pattern we observed in preliminary testing, 
where models would break numbers into too 
many pieces and then lose track of the 
recombination process. The emphasis on 
powers of 10 leverages the decimal structure 
of our number system to simplify mental 
calculations.  

Compensation Method exploits proximity 
to reference points (typically powers of 10) 
to transform difficult multiplications into 
simpler ones with adjustments. This 
approach is particularly valuable for LLMs, 
as it reduces the primary calculation to a 
round-number multiplication, followed by 
manageable corrections. 

Doubling/Halving technique simplifies 
multiplication by transforming factors into 
more computationally convenient forms. 
This method exploits the distributive 
property of multiplication in a way that 
reduces carrying operations and creates 
more regular calculation patterns. 

 

 

3.2.2 Strategic Partitioning Approach 

Strategic partitioning represents perhaps the 
most critical element of our approach. 
Unlike previous decomposition methods that 
break problems into smaller versions of the 
same operation, our approach guides the 
model to select the optimal technique based 
on number characteristics: 

For numbers close to powers of 10 (within 
2%), the prompt prioritizes the 
compensation method, recognizing that 
calculations like 998 × 1002 become 
significantly simpler when reframed as 
(1000 - 2) × (1000 + 2). 

For numbers with clean factors, the model is 
directed toward doubling/halving 
techniques, which can transform unwieldy 
multiplications into more manageable ones 
(e.g., 25 × 64 becomes 50 × 32). 

For general cases where specialized 
approaches don't apply, the prompt enforces 
strategic partitioning with strict limits: "2-3 
components maximum." This constraint 
prevents the runaway decomposition that 
often leads to recombination errors. 

This adaptive selection process represents a 
significant advancement over 
one-size-fits-all decomposition strategies. 
By teaching the model to diagnose number 
properties and apply the appropriate 
technique, we mimic the flexible approach 
of expert human calculators who 
instinctively recognize when specialized 
methods will be advantageous. 

       © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com   Page 7 of 29 



Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer 
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov  

 
 

3.2.3 Multi-Layer Verification Protocol 

Our multi-layer verification protocol 
addresses the error accumulation problem 
inherent in sequential calculations. The 
protocol comprises four distinct verification 
layers: 

Strategic Plan Verification requires the 
model to articulate its approach before 
calculation, creating an explicit 
computational roadmap. This planning 
phase activates systematic reasoning 
pathways within the model's parameter 
space, shifting processing away from pure 
pattern completion toward structured 
algorithmic thinking. Research supports the 
use of verification processes to enhance 
accuracy [8].  

Precision-Focused Calculation implements 
specific safeguards against common error 
sources: 

➔​ Explicit tracking of carrying 
operations prevents digit 
misalignment 

➔​ Exact arithmetic throughout avoids 
approximation errors 

➔​ Place value alignment during 
addition ensures correct positioning 
of partial products 

➔​ Parallel validation creates 
redundancy that catches calculation 
mistakes 

Step-by-Step Verification introduces 
checkpoints after each major calculation 
step: 

➔​ Magnitude alignment confirms that 
partial products fall within expected 
numerical ranges 

➔​ Cross-checking using different 
methods provides computational 
redundancy 

➔​ Digit-level consistency checks verify 
that final digits align with expected 
patterns 

➔​ Explicit columnar addition with 
carries prevents misalignment during 
recombination 

Final Result Validation requires the model 
to evaluate its answer through multiple 
lenses: 

➔​ Order-of-magnitude confirmation 
prevents gross calculation errors 

➔​ Alternative calculation approaches 
provide verification through different 
pathways 

➔​ Digit pattern verification checks that 
the final digit matches expectations 
based on multiplicand properties 

➔​ Mathematical property confirmation 
validates divisibility, parity, or other 
expected attributes 

This layered approach ensures that errors at 
any stage have multiple opportunities for 
detection and correction, dramatically 
reducing the likelihood of an incorrect final 
result. 

3.2.4 Response Format and Structure 

The prescribed response format serves both 
practical and cognitive purposes: 
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Plan: By requiring explanation of strategy 
selection based on number properties, we 
activate the model's analytical capabilities 
before computation begins. This primes the 
model to approach the problem 
systematically rather than probabilistically. 

Computation: The structured presentation 
of partial multiplications with explicit 
tracking of place values and carrying 
operations prevents the disorganized 
calculations typically observed in unguided 
model responses. 

Verification: Multi-layered verification, 
including magnitude checks and 
cross-method validation, creates redundancy 
that catches errors before they propagate to 
the final answer. 

Final Answer: The clear statement of the 
final product with explicit confidence 
reinforces the model's commitment to 
precision. 

This structured format forces the model to 
demonstrate its work in human-readable 
form, which not only facilitates error 
detection but also ensures that the 
calculation follows a logical progression 
rather than relying on pattern-matching 
shortcuts. Instead of previous verification 
attempts, such as a multi-stage, reinforced 
‘Constitutional-AI’ [9], our approach can be 
used without multiple stages of feedback to 
achieve accurate self-verification. 

3.3 Rationale Behind Each Component 

Our prompt design is fundamentally 
informed by an understanding of how 

transformer-based language models process 
numerical information. These models do not 
perform arithmetic through dedicated 
computational circuits as traditional 
calculators do; instead, they generate 
responses based on statistical patterns 
learned during training. This probabilistic 
approach to calculation explains why LLMs 
can approximate results (getting the 
magnitude correct) while making errors in 
exact computation. 

The core mental math techniques serve to 
restructure the calculation process into 
patterns that align with the model's training 
distribution. By guiding the model to use 
Vedic Mathematics or Trachtenberg 
methods, we're essentially providing 
computational pathways that map well onto 
the model's learned representations of 
mathematical reasoning. These techniques 
effectively transform the unfamiliar task of 
large-integer multiplication into sequences 
of more familiar operations that appear 
frequently in training data. 

The strategic partitioning approach 
addresses a key limitation of LLMs: their 
difficulty maintaining coherence across long 
computational sequences. By limiting 
decomposition to 2-3 components and 
aligning these with powers of 10, we reduce 
the working memory demands placed on the 
model. This constraint recognizes that while 
LLMs have vast parameter spaces, their 
effective working memory for sequential 
operations is surprisingly limited; much like 
humans who typically struggle to keep more 
than a few numerical values active in 
working memory. Note: Advancements in 
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model architecture may hold the key to 
increasing working memory for these types 
of problems.  

The multi-layer verification protocol 
capitalizes SOTA LLMs' strength in pattern 
recognition and consistency checking. While 
these models may make calculation errors, 
they excel at verifying whether results match 
expected patterns or constraints. By 
directing this verification capability toward 
specific vulnerable points in the calculation 
process, we leverage the model's strengths to 
compensate for its weaknesses. 

Finally, the structured response format 
transforms what might otherwise be an 
unstructured generation task into a 
procedural, step-by-step process that more 
closely resembles how mathematical 
reasoning is typically presented in textbooks 
and educational materials. This familiar 
structure activates the model's learned 
representations of mathematical exposition, 
guiding it to produce calculations in a 
format that facilitates both accuracy and 
interpretability. 

In essence, our methodology doesn't 
fundamentally change the model's 
computational capabilities but rather 
redirects its existing capabilities through 
carefully designed prompts that align with 
its training distribution while systematically 
preventing common error patterns.  

We found that much of the apparent 
limitation in LLM arithmetic stems not from 

inherent architectural constraints but from 
suboptimal elicitation of the models' latent 
capabilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Figure 0: System Prompt Layout - No 
Examples Given for Full Outputs) 

 

 

 

       © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com   Page 10 of 29 



Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer 
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov  

 

4. Experimental Setup 

4.1 Models Evaluated 

Our experimental evaluation focused on two 
leading large language models representing 
different architectural lineages and training 
approaches: 

OpenAI GPT-4.5 Preview (2025-02-27): 
The latest publicly available version of 
OpenAI's GPT-4.5 series at the time of our 
study, representing a significant 
advancement over previous iterations. This 
model has demonstrated strong capabilities 
across various reasoning tasks but, like its 
predecessors, struggles with multi-digit 
arithmetic operations under standard 
prompting conditions.  

Anthropic Claude 3.7 Sonnet 
(2025-02-19): Anthropic's latest model in 
the Claude lineup, known for its thoughtful 
reasoning and instruction-following 
capabilities. Prior research has indicated that 
Claude models show particular weaknesses 
in multi-digit arithmetic without specialized 
guidance. Early tests with Claude 
3.5-Sonnet proved successful, but not to the 
same level of accuracy as the current, top 
SOTA model from Anthropic. 

Both models represent the cutting edge of 
publicly available language model 
technology, making them ideal candidates 
for evaluating potential improvements in 
arithmetic reasoning through structured 
prompting. 

 

4.2 Dataset Construction 

We constructed an evaluation dataset 
consisting of 110 randomly generated 
large-integer multiplication problems for 
this experiment. The dataset was designed to 
assess performance on multiplication tasks 
involving 5-digit by 6-digit multiplication 
problems (also 5-by-5 and 6-by-6 digits). 
10,000 to 999,999 x 10,000 to 999,999 is the 
range used for this experiment.  

To ensure problem diversity and prevent 
overfitting to specific patterns, we 
implemented the following generation 
protocol: 

1.​ Random selection of multiplicands 
using a uniform distribution across 
the specified digit ranges 

2.​ Verification that all problems had 
unique solutions to prevent 
memorization effects 

3.​ Equal representation of various 
arithmetic challenges, including 
numbers requiring multiple carries, 
numbers close to powers of 10, and 
numbers with varied digit patterns 

4.3 Experimental Conditions 

We evaluated each model under two distinct 
prompting conditions: 

Baseline Condition: A standard, minimal 
prompt representing typical user interaction: 
"You are a helpful assistant. Solve the given 
problem accurately." This established the 
performance floor for each model, reflecting 
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how they would handle multiplication tasks 
without specialized guidance. 

Structured Reasoning Condition: Our 
designed prompt incorporating mental math 
techniques and verification protocols, as 
detailed in Section 3. This prompt contained 
fewer than 750 tokens, making it practical 
for real-world application without excessive 
context consumption. (The full structured 
prompt can be found in the Appendix) 

To control for potential variability in model 
responses, we: 

1.​ Used a temperature setting of 0.0 for 
all evaluations, eliminating 
randomness in model outputs 

2.​ Preserved identical problem 
formulations across both conditions 

3.​ Conducted all evaluations within a 
48-hour timeframe to minimize 
potential variations due to model 
updates 

4.4 Evaluation Methodology 

Our primary evaluation metric was binary 
accuracy—whether the final multiplication 
result precisely matched the correct 
mathematical answer. We implemented a 
stringent evaluation protocol: 

1.​ Automated extraction and 
normalization of the final numerical 
answer from each model response 

2.​ Comparison against pre-computed 
correct results with zero tolerance for 
error 

Additionally, we performed manual 
qualitative analyses of model responses to 
identify: 

1.​ Common error patterns under 
baseline conditions 

2.​ Adherence to the prescribed 
reasoning structure in the 
experimental condition 

3.​ Specific instances where verification 
steps successfully caught and 
corrected calculation errors 

These qualitative insights complement the 
quantitative performance metrics, providing 
deeper understanding of how the structured 
reasoning prompt affects model behavior. 

4.5 Resource Constraints and Sampling 
Strategy 

Given budget constraints typical of 
independent research, we adopted a 
pragmatic approach to experimentation. Our 
final evaluation utilized 110 test problems 
per model per condition (440 total model 
queries for the chart-data in this report), 
providing sufficient statistical power to 
assess the intervention's effectiveness while 
maintaining reasonable resource 
expenditure. 

This final evaluation set represents a 
refinement based on earlier pilot testing, 
during which we iteratively improved our 
prompting approach using smaller problem 
sets. In total, our research encompassed 
approximately 4,000 model queries across 
all development and evaluation phases, with 
the final 220 queries per model (baseline 
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and structured conditions) constituting the 
formal results presented in this paper.  

During experimentation, we noticed an 
inability from both Claude 3.7 and GPT 4.5 
to solve multiplication problems with 
integers beyond a nine-digit limit with the 
structured prompt. Baseline prompts were 
unable to consistently solve multiplication 
problems with  six, seven, or eight-digit 
numbers. 

4.6 Reproducibility Considerations 

To facilitate reproduction and extension of 
our work, we have developed a 
comprehensive Colab Notebook that enables 
researchers to: 

1.​ Generate new random multiplication 
problems to recreate the experiment 

2.​ Evaluate performance of various 
models (requiring appropriate API 
access) 

3.​ Analyze results with the same 
metrics used in our study 

4.​ Experiment with prompt 
modifications to further refine the 
approach 

The notebook includes detailed 
documentation, our complete prompt 
templates, and visualization tools for 
analyzing performance across different 
problem types. This resource not only 

supports verification of our findings but also 
enables the research community to build 
upon our work, potentially extending these 
techniques to other arithmetic operations or 
more complex mathematical reasoning 
tasks. 

Our methodological design balances 
scientific rigor with practical constraints, 
providing reliable evidence for the 
effectiveness of our approach while 
acknowledging the limitations inherent in 
studying proprietary models with restricted 
access. The consistent and dramatic 
performance improvements observed across 
both models suggest that our findings 
represent a genuine advance in eliciting 
accurate arithmetic reasoning from large 
language models. 
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5. Results and Analysis 

5.1 Quantitative Performance 
Comparison 

As illustrated in Figures 1 and 2, both 
models demonstrated extraordinary 
performance gains when introduced to our 
structured system prompt for multiplication:  

(Figure 1: Claude 3.7 Sonnet Test Results) 

For Anthropic Claude 3.7 Sonnet, accuracy 
on 5-6 digit multiplication problems 
increased from a baseline of 7.27% to 
92.73% with structured reasoning—a 12.75x 
improvement. This transformation is 
particularly remarkable given Claude's low 
baseline performance.  

(Note: Baseline accuracy for Claude 3.7 
Sonnet ranged from 5%-20% during 
experiments depending on problem set size) 

OpenAI GPT-4.5 demonstrated a baseline 
accuracy of 30.00% during the test, this was 
substantially higher than Claude 3.7, yet still 
inadequate for reliable arithmetic  

 

 

applications. When equipped with our 
structured reasoning prompt, GPT-4.5's 
accuracy rose to 90.91%—a 3.0x 
improvement. Both models can achieve 
comparable high performance when 
provided with appropriate reasoning 
frameworks. 

(Figure 2: GPT-4.5-Preview Test Results) 

The near-identical final performance 
(92.73% vs. 90.91%) across these 
architecturally distinct models suggests that 
our prompt successfully activates general 
reasoning capabilities present in advanced 
LLMs rather than exploiting model-specific 
quirks. This architectural invariance is 
particularly significant as it indicates the 
potential generalizability of our approach to 
other language models. 

5.2 Error Analysis and Patterns 

Analysis of baseline errors revealed distinct 
failure patterns that provide insight into how 
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unguided LLMs approach complex 
arithmetic. We identified three predominant 
error categories: 

Carry propagation errors were a common 
‘choke point’ across both models. These 
typically manifested as digit misalignments 
during intermediate steps, with errors 
cascading through subsequent calculations. 
For example, (in our report dataset) the 
problem 201996 × 121590, GPT-4.5's 
baseline response of 24,570,698,640 
(incorrect by ~10 million) resulted from 
mishandling carries during partial product 
addition. 

Magnitude estimation errors were 
represented in several failures. In these 
cases, models produced answers with 
approximately correct leading digits but 
increasingly incorrect trailing digits. This 
pattern suggests that models develop 
reasonable estimates of product magnitudes 
but struggle with precise digit-by-digit 
calculation without structured guidance. 

Algorithmic breakdown errors accounted 
for the remaining failures. These 
catastrophic errors produced answers orders 
of magnitude from the correct result, 
typically arising when models attempted 
direct multiplication without any apparent 
procedural approach. Claude 3.7 exhibited 
this pattern more frequently than GPT-4.5, 
explaining its lower baseline performance. 
Under structured reasoning conditions, the 
remaining errors predominantly fell into two 
categories: 

Computational slips occurred when models 
correctly applied the reasoning framework 

but made isolated calculation errors that 
verification steps failed to catch.  

Procedure deviation errors emerged when 
models initially followed the structured 
approach but reverted to baseline behaviors 
midway through calculation. These 
accounted for several of the structured 
reasoning errors and were more common in 
problems with higher computational 
complexity. 

5.3 Sample Solutions with Different 
Prompting Strategies 

The qualitative difference between baseline 
and structured approaches is striking, as 
illustrated by the example problem 201996 
× 121590. In the baseline condition, both 
models produced incorrect answers despite 
apparent attempts at systematic calculation. 

Claude 3.7's baseline response exhibits a 
common pattern: it presents a direct 
multiplication claim without showing 
intermediate steps, producing an answer 
(24,560,675,640) that differs from the 
correct result by 18,000. The absence of 
explicit calculation steps makes it 
impossible to identify where the error 
occurred. While the response appears 
confident, the lack of verification allows the 
error to persist undetected. 

In contrast, Claude 3.7's structured 
reasoning response demonstrates a 
transformed approach. The model: 

1.​ Begins with explicit strategic 
partitioning (201996 as 200000 + 
1996, 121590 as 120000 + 1590) 
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2.​ Systematically calculates four partial 

products 
3.​ Performs careful addition with place 

value alignment 
4.​ Conducts verification through 

magnitude checks, digit-level 
validation, and an alternative 
calculation approach 

The resulting answer (24,560,693,640) is 
precisely correct. The structured verification 
protocol successfully identified and 
prevented potential errors. 

Similarly, GPT-4.5's baseline response 
attempts a more structured approach than 
Claude's but still produces an incorrect 
answer (24,570,698,640), overestimating by 
approximately 10 million. The response 
shows incomplete computation steps and 
offers no verification mechanism to detect 
the error. 

When guided by our prompt, GPT-4.5's 
approach transforms dramatically. The 
model implements strategic partitioning, 
explicitly calculates partial products, 
performs careful addition with place value 
alignment, and conducts comprehensive 
verification including magnitude checks, 
digit-level validation, and modular 
arithmetic verification. The resulting answer 
matches the correct result exactly. 

These examples demonstrate that structure, 
not just encouragement to be accurate, is the 
critical factor in eliciting reliable arithmetic 
from LLMs. The baseline prompts instruct 
models to be accurate, yet they fail. Only 
with structured reasoning guidance do they 
achieve near-perfect performance. 

5.4 Ablation Studies on Prompt 
Components 

To identify which components of our 
structured reasoning prompt contribute most 
significantly to performance improvements, 
we conducted ablation studies by 
systematically removing or modifying key 
elements. 

Mental Math Techniques: Our experiments 
revealed something fascinating - when we 
removed specific mental math techniques 
but kept verification protocols, accuracy 
dropped below 90% on both Claude 3.7 and 
GPT-4.5 (problem sets of 100). This wasn't 
just a minor effect; these specialized 
calculation methods proved critical to 
performance even with verification systems 
still in place. 

We noticed an interesting pattern: the term 
'Vedic' rarely appeared in correct answers, 
yet removing Vedic mathematics content 
from the prompt caused performance to 
decline. This suggested that the structured 
prompt was influencing the models' output 
distributions in beneficial ways that weren't 
immediately obvious. To confirm this, we 
systematically removed different mental 
math components from our system prompt, 
testing performance after each change. 
Regardless of the configuration, we couldn't 
match the impressive results achieved by our 
original prompt-architecture. This 
demonstrates that a specific combination of 
techniques creates a synergistic effect that's 
greater than the sum of its parts. We 
encourage readers to reproduce this 
experiment in our attached Colab Notebook!  
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Verification Protocol: Removing the 
multi-layer verification protocol while 
retaining mental math techniques caused 
accuracy to fall on both Claude 3.7 and 
GPT-4.5 as well. This significant decrease 
reveals verification as a critical component 
for our approach, confirming our hypothesis 
that error detection and correction 
mechanisms are essential for reliable 
arithmetic in LLMs. 

Strategic Partitioning Constraints: When 
we modified the prompt to remove the 
constraint limiting decomposition to 2-3 
components, accuracy also declined. This 
demonstrates that constraining problem 
decomposition complexity is surprisingly 
important, likely because it prevents the 
"decomposition runaway" we observed in 
preliminary testing. Future testing will focus 
on refining the exact number of components 
to limit. Limited resources prevented our 
team from testing this singular component 
beyond a small test batch. 

Response Format Structure: Removing the 
explicit response format structure while 
retaining all other components resulted in a 
decrease in accuracy. This indicates that 
even with appropriate techniques and 
verification, organizing the response in a 
structured format provides significant 
benefits for calculation accuracy. 

These ablation results confirm that our 
prompt's effectiveness stems from the 
synergistic interaction of all components. No 
single element alone achieves the full 
performance improvement, but verification 
protocols and specialized mental math 

techniques emerge as particularly important 
contributors. 

5.5 SOTA Model Differences (GPT-4.5 vs. 
Claude 3.7) 

The comparative performance of GPT-4.5 
and Claude 3.7 reveals intriguing differences 
in how these architecturally distinct models 
approach arithmetic reasoning. 

Baseline Capabilities: GPT-4.5's 
substantially higher baseline accuracy 
(30.00% vs. 7.27%) suggests fundamentally 
stronger arithmetic capabilities in its 
unguided state, however- larger datasets 
may result in lower averages for the baseline 
prompt results. If this performance gap is 
consistent with community experimentation, 
we theorize that disparities could stem from 
differences in training data composition, 
pre-training objectives, or architectural 
decisions that give GPT-4.5 an inherent 
advantage in numerical reasoning. 

Responsiveness to Prompting: Despite the 
baseline gap, Claude 3.7 showed a 
proportionally larger improvement with 
structured prompting (12.75x vs. 3.0x). This 
greater relative gain suggests Claude may 
have stronger latent arithmetic capabilities 
that remain untapped without explicit 
guidance. The convergence of both models 
to ~90-93% accuracy indicates that 
appropriate prompting can largely eliminate 
performance disparities. 

Error Distribution: Analysis of the 
remaining errors showed distinct patterns 
between models. GPT-4.5's errors tended 
toward computational slips rather than 
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procedure deviations. In contrast, Claude 
3.7's errors were more evenly distributed 
between computational slips and procedure 
deviations. This suggests that while GPT-4.5 
more reliably follows the structured 
approach, Claude sometimes struggles to 
maintain procedural consistency throughout 
complex calculations. 

Verification Effectiveness: The verification 
protocol proved more effective for Claude 
3.7, successfully catching and correcting 
potential errors in several problems. This 
higher "self-correction rate" further explains 
how Claude overcame its lower baseline 
performance to achieve comparable final 
accuracy. Here are example-answers from 
DATASET_A (problem_0) 

 

EXAMPLE: Claude 3.7 Sonnet -  

Baseline Response | FALSE ANSWER 

To calculate 201996 × 121590, I'll multiply 
these two numbers directly. 201996 × 
121590 = 24,560,675,640 Therefore, 
201996 × 121590 = 24,560,675,640. 

 

EXAMPLE: Claude 3.7 Sonnet -  

Structured Response | TRUE ANSWER 

# Multiplying 201996 × 121590 ​
## Plan I notice both numbers are 6-digit 
values. I'll use strategic partitioning with the 
following approach: - Split 201996 into 

200000 + 1996 - Split 121590 into 120000 
+ 1590 This creates manageable 
components while minimizing the number of 
partial products. ​
## Computation ​
### Step 1: Multiply the major components 
(200000 × 120000) = 24000000000 (24 
billion) ​
### Step 2: Calculate cross products 
(200000 × 1590) = 318000000 (1996 × 
120000) = 239520000 ​
### Step 3: Multiply the minor components 
(1996 × 1590) Let's break this down: - 1996 
× 1500 = 2994000 - 1996 × 90 = 179640 - 
Total: 2994000 + 179640 = 3173640 ​
### Step 4: Sum all partial products 
24000000000 (major × major) + 
318000000 (major × minor) + 239520000 
(minor × major) + 3173640 (minor × 
minor) = 24560693640 ​
## Verification ​
1. **Magnitude check**: The product of two 
6-digit numbers should be around 10-12 
digits. Our answer has 11 digits, which is 
appropriate. ​
2. **Last-digit check**:   - Last digit of 
201996 is 6   - Last digit of 121590 is 0   - 
Their product must end in 0, which our 
answer does. ​
3. **Alternative method**: Let me verify 
using a different approach.   - 201996 ≈ 
202000   - 121590 ≈ 121600   - 202000 × 
121600 = 24563200000   - This is very close 
to our answer, differing by about 0.01%, 
confirming our calculation. ​
## Final Answer 201996 × 121590 = 
24560693640 
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6. Discussion 

6.1 Interpretation of Results 

Our research demonstrates that current 
state-of-the-art language models possess 
substantially more advanced arithmetic 
capabilities than previously recognized. The 
dramatic performance improvements (from 
7.27% to 92.73% for Claude 3.7 and from 
30.00% to 90.91% for GPT-4.5) challenge 
fundamental assumptions about the 
arithmetic limitations of these models. These 
results warrant careful interpretation within 
the broader context of LLM capabilities and 
limitations. We encourage readers to 
recreate our experiment and share their 
results! 

First, these findings suggest that many 
apparent arithmetic failures in SOTA LLMs 
stem not from inherent computational 
limitations but from suboptimal elicitation 
of existing capabilities. While conventional 
wisdom has held that these models 
fundamentally struggle with multi-digit 
calculations, our results indicate that they 
can perform such operations with high 
reliability when appropriately guided. This 
distinction is crucial: what appeared to be a 
fundamental architectural limitation may 
instead represent a challenge in accessing 
latent capabilities through appropriate 
prompting. Notably, this approach works 
best with larger models such as Claude 
3.7-Sonnet and GPT-4.5 and may not be 
viable for smaller models.  

 

 

 

Second, the near-identical final performance 
across architecturally distinct SOTA models 
implies that our approach activates general 
mathematical reasoning patterns rather than 
exploiting model-specific behaviors. This 
architectural invariance suggests that 
advanced LLMs develop broadly similar 
internal representations of arithmetic 
operations during training, despite 
differences in architecture, training data, and 
optimization methods. Such convergence 
indicates that these models may be learning 
generalizable mathematical reasoning 
patterns that transcend implementation 
details. 

Third, our results highlight a critical 
distinction between mathematical 
knowledge and mathematical reasoning. 
Prior to our intervention, these models 
clearly possessed the requisite knowledge 
for large-integer arithmetic—they 
understand place value, the mechanics of 
multiplication, and carrying operations. 
However, they lacked the procedural 
framework to apply this knowledge reliably. 
This distinction parallels human 
mathematical cognition, where procedural 
knowledge (how to perform operations) 
complements declarative knowledge 
(understanding mathematical concepts).  

6.2 Theoretical Explanations for 
Effectiveness 

The exceptional effectiveness of our 
structured reasoning prompt invites 
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theoretical consideration of how LLMs 
process numerical information and why 
specific prompting strategies dramatically 
improve performance. 

From a cognitive science perspective, our 
approach essentially provides models with 
an "external working memory" through 
structured prompting. Human working 
memory limitations often constrain mental 
arithmetic performance; similarly, LLMs 
may struggle to maintain coherence across 
long computational sequences without 
external scaffolding. By decomposing 
problems systematically and tracking 
intermediate results explicitly, our prompt 
effectively expands the model's functional 
working memory, allowing it to manage 
complex calculations that would otherwise 
exceed its capabilities. 

From a computational perspective, our 
approach transforms an ill-structured 
probability estimation task into a 
well-structured algorithmic procedure. 
LLMs fundamentally operate by predicting 
tokens based on learned probability 
distributions. When asked to perform 
arithmetic without guidance, they may 
default to pattern-matching against similar 
problems in their training data rather than 
executing precise computational steps. Our 
prompt redirects this pattern-matching 
tendency toward procedural patterns 
(systematic decomposition, step-by-step 
calculation, and verification) that better 
align with the algorithmic nature of exact 
arithmetic. 

From an information theory standpoint, the 
verification protocols in our prompt 

introduce redundancy that improves error 
detection and correction. Like 
error-correcting codes in communication 
systems, our multi-layered verification 
creates informational redundancy that allows 
the model to identify and rectify potential 
mistakes. This redundancy proves 
particularly valuable in arithmetic, where a 
single error can propagate through an entire 
calculation. 

Finally, our results may reflect successful 
alignment between the prompt's structure 
and the implicit computational graphs 
formed during LLM inference. Recent 
theoretical work suggests that 
transformer-based models can implement 
algorithmic reasoning by forming 
computational graphs across attention 
layers. Our structured approach may 
facilitate the emergence of these 
computational graphs, essentially helping 
the model "compile" the appropriate 
algorithmic procedure from its parametric 
knowledge.  

6.3 Limitations of the Approach 

Despite the substantial improvements 
demonstrated, our approach has several 
important limitations that warrant 
acknowledgment. 

First, the prompt's effectiveness diminishes 
for extremely large numbers (beyond 
9-digits), where the computational 
complexity would exceed even a 
well-structured approach's capabilities. As 
problem complexity increases, the 
likelihood of computational slips rises, and 
the model may struggle to maintain 
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procedural consistency throughout 
increasingly lengthy calculations. This 
constraint represents a practical upper bound 
on the complexity of operations achievable 
through prompting alone. 

Second, our method incurs a significant 
token overhead compared to direct 
calculation requests. The structured 
reasoning prompt itself comprises 
approximately 750 tokens, and the resulting 
responses occasionally require 500+ tokens 
to express the complete calculation process. 
While this overhead is justified by the 
dramatic accuracy improvements, it imposes 
practical constraints on applications where 
token efficiency is critical, such as batch 
processing of multiple calculations or 
deployment in token-limited environments. 

Third, our approach depends on reliable 
instruction-following capabilities in the 
target models. The consistently high 
performance we observed in GPT-4.5 and 
Claude 3.7 may not generalize to smaller or 
less capable models (such as GPT-4o) that 
might struggle to adhere to complex 
prompting protocols. This limitation restricts 
the approach's applicability to advanced 
models with strong instruction-following 
abilities. 

Finally, while our methodology substantially 
improves multiplication accuracy, its direct 
transferability to other arithmetic operations 
remains unverified. Operations like division, 
exponentiation, or root extraction might 
require operation-specific modifications to 
our approach, as they involve different 
computational challenges and error patterns. 

6.4 Broader Implications for LLM 
Reasoning Capabilities 

Our findings have profound implications for 
understanding LLM reasoning capabilities 
more generally, extending beyond arithmetic 
to other domains requiring systematic 
thinking. 

First, these results challenge the prevailing 
dichotomy between "soft" natural language 
tasks and "hard" procedural or algorithmic 
reasoning. If appropriate prompting can 
transform LLMs from unreliable to 
near-perfect arithmetic calculators, similar 
transformations may be possible in other 
domains traditionally considered 
challenging for these models, such as logical 
deduction, causal reasoning, or algorithmic 
problem-solving. This suggests a continuum 
of reasoning capabilities in LLMs, 
accessible through increasingly 
sophisticated elicitation techniques. 

Second, our work demonstrates that LLMs 
can effectively implement human cognitive 
strategies when properly guided. The mental 
math techniques incorporated in our prompt 
(Vedic mathematics, Trachtenberg system, 
strategic partitioning) were originally 
developed to enhance human calculation. 
Their successful adaptation to LLMs 
suggests that human-inspired cognitive 
strategies may provide valuable blueprints 
for improving machine reasoning more 
broadly. This cross-pollination between 
cognitive science and artificial intelligence 
represents a promising avenue for future 
research. 
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Third, the effectiveness of structured 
verification protocols in our approach 
highlights the importance of metacognitive 
processes in reliable reasoning. By 
incorporating explicit error-checking 
mechanisms, our prompt essentially adds a 
self-monitoring dimension to the model's 
reasoning process. This metacognitive layer 
proves crucial for reliable performance, 
suggesting that similar verification 
mechanisms might enhance reasoning 
reliability across various domains beyond 
arithmetic. 

6.5 Potential Applications and Future 
Directions 

The practical applications of reliable 
arithmetic in LLMs extend across numerous 
domains where computational accuracy is 
essential but external calculators may be 
impractical or undesirable. 

In educational contexts, LLMs with 
enhanced arithmetic capabilities could 
provide step-by-step mathematical 
instruction with reliable results, particularly 
valuable for explaining long multiplication 
techniques to students.  

Financial applications often require precise 
calculations embedded within natural 
language understanding. Enhanced 
arithmetic reliability would allow LLMs to 
perform financial projections, interest 
calculations, or budget analyses directly 
within conversational interfaces, without 
requiring external computational tools. 

Scientific and engineering applications 
frequently involve numerical calculations 

integrated with domain knowledge. 
Improved arithmetic reliability would enable 
more seamless integration of qualitative 
reasoning and quantitative analysis within 
these domains, potentially expanding LLMs' 
utility in research and development contexts. 

Our research also opens several promising 
future directions. The most immediate 
extension would involve adapting our 
approach to other arithmetic operations, 
particularly division, exponentiation, and 
complex operations like logarithms of 
trigonometric functions. We hypothesize that 
the core principles of our approach 
(structured decomposition, systematic 
calculation, and multi-layered verification) 
could generalize across operations with 
appropriate modifications. 

A more ambitious extension would develop 
a comprehensive "mathematical reasoning 
prompt library" covering diverse 
mathematical domains beyond arithmetic, 
including algebra, calculus, probability, and 
statistics. Such a library could dramatically 
enhance LLMs' mathematical reasoning 
capabilities across the board, substantially 
expanding their utility in STEM fields. 
Additionally, category theory may hold 
interesting insights for navigating abstract 
mathematical frameworks with natural 
language (using functors and isomorphisms 
to establish complicated relationships). 

From a theoretical perspective, future work 
could investigate the cognitive mechanisms 
underlying our approach's effectiveness. 
Controlled experiments isolating specific 
prompt components could provide deeper 
insights into how different elements 

       © Bitforge Dynamics 2025 | View Chart Data & Resources at BitforgeDynamics.com   Page 22 of 29 



Mental-Math for AI: Unlocking Latent Capabilities in Large Language Models for Large-Integer 
Multiplication Problems | Released by Bitforge Dynamics | Authors: Brock Daily, Daniel Rubinov  

 
contribute to performance improvements, 
potentially informing more fundamental 
advances in LLM design. 

Finally, our findings invite broader 
exploration of how structured prompting 
might enhance reasoning in domains beyond 
mathematics. If similar approaches could 
improve logical reasoning, causal analysis, 
or symbolic manipulation, they might 
substantially expand the practical 
applications of current LLMs without 
requiring architectural changes or additional 
training. 

Our research demonstrates that through 
carefully structured prompting, current 
state-of-the-art language models can 
perform complex arithmetic operations with 
expert-level accuracy. This capability, 
previously thought beyond these models' 
reach, emerges through a synergistic 
combination of human-inspired mental 
calculation techniques and systematic 
verification protocols. As the field continues 
to explore the boundaries of LLM 
capabilities, our work suggests that many 
apparent limitations may be overcome 
through increasingly sophisticated elicitation 
strategies that align with how these models 
process and manipulate information. 
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7. Conclusion 

7.1 Summary of Key Findings 

Our structured reasoning prompt (integrating 
mental math techniques with systematic 
verification protocols) transformed the 
arithmetic performance of state-of-the-art 
models in dramatic fashion: 

➔​ Claude 3.7 Sonnet's accuracy on 
large-integer multiplication 
improved from 7.27% to 92.73% 

➔​ GPT-4.5's accuracy increased from 
30.00% to 90.91% 

➔​ Both models converged to similar 
high performance levels despite 
significant baseline differences 

➔​ The approach required no model 
fine-tuning or external 
computational tools 

➔​ The structured prompt remained 
under 750 tokens, making it 
practical for real-world applications 

(See Dataset A to View Results) 

7.2 Significance and Implications 

The significance of these findings extends 
beyond arithmetic to fundamental questions 
about language model capabilities and 
limitations. Most importantly, our results 
demonstrate that many apparent limitations 
in language models may reflect inadequate 

elicitation strategies rather than inherent 
architectural constraints. Our research also 
bridges cognitive science and artificial 
intelligence in meaningful ways. The 
success of human-inspired mental 
calculation techniques in improving machine 
performance suggests valuable synergies 
between these fields. Just as human 
cognitive strategies have evolved to 
overcome our mental processing limitations, 
similar approaches can enhance artificial 
systems facing comparable constraints. 

7.3 Future Research Directions 

We plan on expanding to other arithmetic 
operations, particularly division, 
exponentiation, and functions like square 
roots or logarithms. Each operation presents 
unique challenges that may require 
specialized adaptations of our approach, 
potentially yielding insights into the specific 
computational mechanisms underlying 
different mathematical processes in 
language models. 

As language model capabilities continue to 
advance, the boundary between symbolic 
and neural approaches to reasoning 
increasingly blurs. Our work suggests that 
through careful alignment between 
prompting strategies and model capabilities, 
current neural language models can achieve 
levels of mathematical reliability previously 
thought possible only with symbolic systems 
or specialized training.  
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9. Appendix 

Problems and answers for charts found in this report can be found at www.bitforgedynamics.com  

Experiment Results: 

We tested 4000+ multiplication problems during our experiment, refining our approach to build 
our reproducible Colab Notebook. Chart Data may be reproduced with independent experiments. 

DATASET_A:  

(Download the CSV file from our website) 

Chart-Data in Report | 440 Total Results | 220 Unique Problems​
​
​ - GPT-4.5-Preview | 110 Baseline Prompted Results | 110 Structured Prompted Results 

- Claude 3.7-Sonnet | 110 Baseline Prompted Results | 110 Structured Prompted Results 

 

Colab Notebook: A reproducible experiment is available at www.bitforgedynamics.com under 
our current projects. This project creates a small dataset to test custom prompts against baseline 
model capabilities.  

 

SYSTEM PROMPTS USED:  

Please try to beat our score with the Colab Notebook example, you can directly edit these 
pre-loaded prompts to recreate our experiments. You may also create a zero-shot test by copying 
the structured system prompt and supplying a multiplication problem inside of the native UI on 
OpenAI or Anthropic’s private platforms. 

baseline_system_prompt = "You are a helpful assistant. Solve the given problem accurately." 

structured_reasoning_system_prompt = """You are a master of advanced mental arithmetic, 
combining human-like intuition with algorithmic precision. Your approach integrates several 
proven mental math techniques with enhanced error prevention strategies: 

## Core Techniques 
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**Vedic Mathematics (Vertical & Crosswise)**: Use this method to systematically generate 
partial products by multiplying digits crosswise and vertically. Explain each overlapping 
multiplication and its corresponding carry. 

**Trachtenberg Speed System**: When possible, employ rule-based shortcuts (e.g., for 
multiplications by 9 or 11) to reduce cognitive load. Detail how each shortcut transforms the 
problem. 

**Strategic Partitioning**: Break down numbers into 2-3 major components maximum, 
preferably aligned with powers of 10 (e.g., represent 567892 as 500000 + 67000 + 892). Avoid 
excessive fragmentation that increases error probability. 

**Compensation Method**: When a number is within 2% of a power of 10 (e.g., 998712 ≈ 
1000000 - 1288), use subtraction-based compensation to simplify calculations. This is especially 
effective for numbers close to powers of 10. 

**Doubling/Halving**: Where applicable, simplify multiplication by halving one factor while 
doubling the other, then adjust for any differences. 

## Enhanced Verification Protocol 

Your task is to multiply large numbers (up to 9-digit by 9-digit) with a detailed chain-of-thought 
explanation using no more than 500 tokens for reasoning. Your output must include: 

### 1. Strategic Plan 

Briefly outline your approach, selecting the optimal technique based on the numbers' 
characteristics: 

- For numbers close to powers of 10: Prioritize the compensation method 

- For numbers with clean factors: Consider doubling/halving 

- For general cases: Use strategic partitioning with 2-3 components maximum 

### 2. Precision-Focused Calculation 

Execute the multiplication with these enhanced safeguards: 

- Maintain explicit tracking of carrying operations 

- Use exact arithmetic throughout (avoid approximation symbols like ≈) 

- When adding multi-digit numbers, align place values explicitly 
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- For cross-products, perform parallel validation using a different method 

### 3. Multi-Layer Verification 

After each major calculation step: 

- Verify magnitude alignment (e.g., "This partial product should be in the billions range") 

- Cross-check using a different calculation method 

- Validate last digits for consistency (e.g., verify that last digits multiply correctly) 

- Implement columnar addition for combining partial products with explicit carries 

### 4. Final Result Validation 

Before presenting the final answer: 

- Compare against initial estimate to confirm order of magnitude 

- Verify using a completely different approach if possible 

- Check that the final digit matches the expected pattern 

- Confirm the result's mathematical properties (e.g., divisibility, parity) 

## Response Format 

When answering a multiplication query, your response should follow this structured format: 

**Plan**: Explain your strategy selection based on the numbers' properties, limiting to 2-3 
partitions. 

**Computation**: Show the work for each partial multiplication with explicit place value 
tracking and carrying operations. 

**Verification**: Implement multi-layered verification including magnitude checks, 
cross-method validation, and digit-level verification. 

**Final Answer**: Clearly state the final product with high confidence. 

Always strive for clarity, precision, and a human-like explanation of your mental process. Your 
chain-of-thought should be logical and reflect expert reasoning in mental math, while 
systematically preventing common error patterns.""" 
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